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Abstract 

 

Oscillation phenomena in flames were theoretically investigated for both diffusion and 

premixed flames. For diffusion flames, oscillations develop intrinsically as a result of 

thermal-diffusive instability when the Lewis numbers are larger than unity. A nonlinear 

stability analysis for the intrinsic oscillation in a planar flame was first conducted by 

deriving an evolution equation for the amplitude of perturbation, through which three 

possible flame responses were predicted: the flame may be stable, unstable or oscillate 

persistently. This study was then extended to investigate forced flame oscillations by 

incorporating imposed flow oscillations. Resonance between the intrinsic and forced 

oscillations was identified when the flame is close to the marginally stable state and the 

imposed frequency approaches the intrinsic flame oscillation frequency.  

The analysis was then extended to radiation-affected diffusion flames. A model 

accounting for effects of radiative heat loss and nonunity Lewis numbers was first 

developed to study the structure and extinction characteristics of counterflow diffusion 

flames. Dual extinction limits in the presence of radiative loss, namely the kinetic and 

radiative limits at small and large Damköhler numbers, respectively, were identified. 

Based on this result, the model was then employed to study intrinsic flame oscillations 

with emphasis on those developed near the radiative extinction limit. It was shown that 

radiative loss assumes a similar role as increasing the thermal diffusivity of the reactants. 

Thus, flame oscillation near the radiative limit is still a thermal-diffusive instability 

phenomenon in nature, although it may develop under unity Lewis number. 
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For premixed flames, the study was focused on the linear response of stretch-

affected premixed flames to flow oscillations. In particular, the effects of flame stretch on 

the response of heat release rate in a wedge-shaped flame were studied. It was found that 

the effects of flame stretch become important through the modulation of the flame surface 

area when the normalized oscillation frequency is of the order of )ˆ( 2/1−
CO σ , where Cσ̂  is 

the Markstein number characterizing the curvature effect of flame surface. For frequency 

below this order, the flame responds as an unstretched flame. 
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Chapter 1: Introduction 

 

1.1. Overview 

The present study is concerned with the oscillation phenomena in flames, in particular 

those driven by the intrinsic thermal-diffusive instability in diffusion flames and the 

thermo-acoustic instability in premixed flames. As such, this dissertation will be 

presented within the context of flame instabilities in both diffusion and premixed flames. 

In addition, since oscillations in diffusion flames have been primarily observed near the 

extinction state while radiative heat loss has been known to play an important role in both 

the flame oscillation and extinction behavior [1-5], the present study is therefore also 

concerned with the extinction characteristics of radiation-affected diffusion flames. 

Combustion processes are governed by the equations of fluid mechanics that 

describe the conservation of mass, momentum and energy, supplemented by the species 

conservation equations expressing the mass balance of the species involved in the 

chemical reaction. These equations are, in general, highly nonlinear, multidimensional 

and strongly coupled. Thus, investigations often resort to simplified theories in order to 

gain fundamental understanding of various combustion processes.  

In a certain sense, modern combustion theory started from the paper by Zeldovich 

& Frank-Kamenetski [6], in which the analytical formulas for the velocity and structure 

of a planar stationary flame supported by an Arrhenius reaction were derived by 

recognizing that the overall activation energy of the reaction is large in comparison to the 

available thermal energy. This work pioneered the concept of exploiting the physical 
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knowledge of the flame structure in order to make mathematical simplifications and, as a 

result, has led to the development of activation energy asymptotics extensively used in 

theoretical studies to this day [7].  

The flame, though an entirely deterministic system, is capable of spontaneously 

developing irregular spatio-temporal behavior that can also be chaotic under certain 

physico-chemical conditions [8-13]. These unstable flame phenomena, often manifested 

in the forms of cells, ridges or pulsations over the flame surface, lead to various 

multidimensional patterns on the otherwise smooth or stationary flame front. The next 

important step in the development of combustion theory is the Darrieus-Landau (DL) 

solution for flame instability, in which an infinitely thin planar flame front is shown to be 

absolutely unstable against any perturbation as a consequence of density jump across the 

flame [14, 15]. Thus, a flame cannot propagate as a planar stationary front, but instead it 

becomes cellular, sometimes nonstationary and even turbulent. The DL theory, also 

known as that of hydrodynamic instability, however, ignores the structure of the flame 

such that it is not valid for perturbations of short wavelength that is comparable to the 

flame thickness [8, 13]. This has led to a great deal of work since the 1940s to improve 

the DL theory by incorporating the effects of finite flame thickness and the transport 

processes within the flame zone [16-22]. 

In addition to the DL hydrodynamic mechanism, Sivashinsky [23] developed a 

thermal-diffusive theory by assuming constant density, and showed that cellular flame 

fronts can also develop in mixtures with Le < 1 in the absence of hydrodynamic effect, 

where the Lewis number, Le, is defined as the ratio of the thermal diffusivity of the 

mixture to the mass diffusivity of the deficient species. Furthermore, Sivashinsky [23] 
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found that a planar flame may propagate in the form of pulsating fronts for mixtures with 

sufficiently large Lewis numbers. These flame instabilities, either cellular or pulsating, 

result from the imbalance between the thermal and mass diffusion, and hence are referred 

to as the thermal-diffusive instability. In the present state, various flame instabilities in 

premixed flames have been extensively studied and the underlying mechanisms are 

relatively well understood. 

Unlike premixed flames, diffusion flames do not propagate, but rather are fixed 

within the neighborhood of the stoichiometric surface at which the fuel and oxidizer meet. 

Thus, diffusion flames are relatively stable and the instabilities observed in premixed 

flames are generally believed to be absent in diffusion flames. However, recent 

experiments have also identified some fascinating unstable behaviors in diffusion flames, 

especially near the extinction state [1-4, 24-29]. For example, flame strips and 

oscillations have been reported in both hydrogen and hydrocarbon/air diffusion flames in 

experiments involving a variety of configurations, such as candle and jet flames. These 

observed striped and oscillating flames are primarily driven by the thermal-diffusive 

instability, and thermal expansion does not play a crucial role [13]. Consequently, most 

theoretical studies on instabilities in diffusion flames adopted the constant density 

approximation to simplify the analysis and capture the major physics [30-38]. However, 

even within this framework, the problem is still rather complicated because of the large 

number of parameters involved, including those associated with both the reactant 

properties and flow conditions [13]. Thus, compared to the well understood premixed 

flame instabilities, there have been relatively few theoretical studies of diffusion flame 

dynamics. Therefore one of the primary objectives of this dissertation is to remedy this 
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deficiency and study, in particular, flame oscillations in diffusion flames driven by the 

thermal-diffusive instability. 

Since, as indicated above, combustion theory was mainly developed from the 

study of premixed flame dynamics that are richly endowed with instability phenomena, in 

the following we shall first present an overview of flame instabilities in premixed, which 

will then be followed by a discussion on the instability of diffusion flames. Flame 

oscillations resulting from the imposed unsteady flow variations will also be discussed 

within the context of flame instabilities because in some cases they act as the key 

elementary process in the development of flame instabilities. Then, the objectives and 

outline of this dissertation will be presented. 

 

1.2. Premixed Flame Instabilities 

Flame instabilities arise in combustion processes in many different forms. They can be 

classified as intrinsic instabilities, such as hydrodynamic instability and thermal-diffusive 

instability, which are developed from the combustion processes irrespective of the 

combustion chamber, or chamber instabilities, such as thermo-acoustic instability, which 

are developed from the interaction of the combustion processes with the chamber [7]. In 

the following, theses instabilities will be discussed separately. 

 

1.2.1. Hydrodynamic Instability 

Hydrodynamic instability is caused by the density difference between the burned and 

unburned gases due to thermal expansion [7]. Its physical explanation is shown in Fig. 

1.1. The flame front is assumed to be infinitely thin and propagates normal to itself with a 
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constant speed. When the flame is perturbed as shown, the streamlines leading to the 

convex section of the flame with respect to the unburned gas diverge, while those leading 

to the concave section converge. As a result, the velocity of the flow between the 

diverging streamline decreases, while the velocity between the converging streamlines 

increases. Therefore, the flame cannot balance the incoming flow, and as such is unstable 

to the perturbations that wrinkle the flame. Within this framework, Darrieus [14] and 

Landau [15] made the first analysis on flame instability and derived a dispersion relation 

relating the perturbation growth rate σ to its wavenumber k as  

)1/()( 32
0

0

eeeee +−−+=Ω

Ω= ksbσ
 

where e = rb/ru is the ratio of the densities of the burned and unburned gas and sb the 

flame velocity relative to the burned gas. It is seen that for all e < 1 the growth rate σ is 

always positive for any wavenumber k, indicating that flames are unconditionally 

unstable and hence cannot sustain a smooth front. However, this is in conflict with the 

fact that smooth fronts have been observed in small scale experiments, implying that they 

are stable to perturbations of short wavelength [16, 39-41]. For this reason, subsequent 

work on hydrodynamic instability was aimed at correcting the DL theory for short-wave 

perturbations by taking the flame structure into consideration. Specifically, Markstein [16] 

incorporated the effects of finite flame thickness by relating the flame speed to the local 

curvature of the flame front through a phenomenological constant, A, called the Markstein 

length. Linear stability analysis shows that the Markstein theory yields stabilization of 

short-wave perturbations, which explains the existence of small scale planar flame fronts. 

However, the Markstein length cannot be determined by such a phenomenological 
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approach. Istratrov & Librovich [17] then realized that this problem is characterized by 

two disparate length scales, the diffusion length (AD = Dth/su) and the hydrodynamic 

length (Λ = 2π/k), which respectively characterize the length scales of the flame thickness 

and flame geometry, where Dth is the thermal diffusivity of the mixture and su the laminar 

flame speed with respect to the unburned gas. Utilizing this multiscale feature, Matalon 

& Matkowsky [18] performed a rigorous asymptotic analysis of the flame structure and 

solved the Markstein length, A, in terms of the physico-chemical properties of the mixture. 

Then reconsideration of the linear stability analysis yields a dispersion relation in the 

form 

2
th10 kDksb Ω−Ω=σ      (1.1) 

where Ω1 is determined by the Lewis number, Le, the density ratio, e, and the Zeldovich 

number 2/)( bub RTTTE −=β , E is the activation energy, R the universal gas constant and 

Tb and Tu are the temperatures of the burned and unburned gases, respectively. Thus, the 

second term in the RHS of Eq. (1.1) represents a correction to the DL result. For Ω1 > 0 

this correction term has a stabilizing effect for short-wave perturbations with 

wavenumber k > kc = Ω0sb/Ω1Dth, which agrees with the Markstein’s phenomenological 

theory. Similar results were also obtained by Pelcé & Clavin [20] and Frankel & 

Sivashinsky [21], respectively. 

 

1.2.2. Thermal-Diffusive Instability 

Thermal-diffusive instability arises in flames as a result of the imbalance between the 

thermal and mass diffusion, i.e. for Lewis number differing from unity, Le ≠ 1. There are 
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two modes of thermal-diffusive instability, cellular and pulsating, which respectively 

occur for Le < 1 and Le > 1. 

Zeldovich [42] proposed a theory, as shown in Fig. 1.2a, to qualitatively explain 

the cellular instability. It should be noted that the length scale of the wrinkles is of the 

order of the flame thickness AD, since it is at this scale that the diffusion processes 

become important. This is in contrast to the hydrodynamic theory in which the transverse 

scale of the wrinkles, Λ, is much larger than the flame thickness. It is seen from Fig. 1.2a 

that in the convex section of the flame with respect to the unburned gas, mass diffusion of 

the reactants into the reaction zone is focused and as such tends to strengthen the flame. 

However, the convex front has the opposite effect on heat conduction, which 

consequently weakens the flame. The net effect of these two phenomena depends on the 

relative rates of heat and mass diffusion, i.e. the Lewis number, Le. For Le < 1, the effect 

of mass diffusion is stronger than that of heat conduction such that the convex section of 

the flame front becomes stronger and propagates faster, while, by the same reasoning, the 

concave section weakens and propagates slower, leading to a cellular flame front. For Le 

> 1, the effect is opposite and hence the flame is cellularly stable. However, for flames 

with Le > 1, pulsating flame front may develop as a consequence of the unequal rate of 

mass diffusion and heat conduction. Figure 1.2b shows the simplified structure of a 

planar flame with the profiles of temperature and deficient species for Le < 1 and Le > 1, 

respectively. For Le < 1, if the reaction zone is positively perturbed with respect to the 

flame front, upstream heat conduction is increased by a larger extent than mass diffusion 

into the reaction zone, as evidenced by the steeper slope of the temperature profile. 

Consequently, the flame is weakened and the reaction zone relaxes back to its original 
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position. Similarly, a negative perturbation strengthens the flame and leads it back to the 

original position again. However, for Le > 1, by the same argument, a positive 

perturbation will strengthen the flame such that the reaction zone tends to outrun the 

flame front, recognizing nevertheless that it is bounded by the finite thickness of the 

preheat zone. As a consequence, the flame will propagate in a pulsating manner. 

Although the motion of a flame front is always accompanied by the motion of the 

local flow field, the above qualitative theory implies that the hydrodynamic effect plays a 

secondary role for the thermal-diffusive instability. As such, theoretical studies have 

often adopted a constant density approximation, also referred to as the thermal-diffusive 

model, to simplify the analysis and capture the controlling physics [23, 43-44]. In this 

way, the flame is a passive front in a prescribed flow field and the system is governed 

only by energy and species conservation equations. Using this model, Barenblatt et al. 

[43] performed a linear analysis for the cellular mode of the thermal-diffusive instability 

in a planar flame subject to long-wave perturbations, and derived the following 

dispersion relation 

[ ] 2
2
1

th 1)1( kLeD −−= βσ  

It is seen that for Le < Lec = 1 − 2/β, the flame is unstable to any perturbation and 

becomes stable as Le > Lec. The stability boundary Lec is slightly less than unity because 

in additional to nonequidiffusion, pure curvature effects tends to smoothen the flame 

front by decreasing the flame speed at the convex section and increasing at the concave 

section [45]. This shifts the stability boundary for Le from unity to a slightly smaller 

value. Subsequently, Sivashinsky [23] incorporated the relaxation effects of short-wave 
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perturbations and derived a dispersion relation for Le ≈ Lec using large activation energy 

asymptotics as  

[ ] 42
th

2
2
1

th 41)1( kDkLeD DA−−−= βσ  

Thus, when the flame is unstable, i.e. Le < Lec, there exists a critical wavenumber kc that 

corresponds to the fastest growing mode of the perturbation and hence determines the 

critical size of cells as they begin to develop over the flame front. Sivashinsky [23] also 

determined a criterion for the occurrence of the planar pulsating mode of thermal-

diffusive instability:  

9.10)31(4)1( ≈+>−Leβ     (1.2) 

When the flame is corrugated the expression in Eq. (1.2) is slightly below 10.9. Since 

typical values of β and Le of gaseous systems cannot satisfy Eq. (1.2), it is concluded that 

pulsating instability cannot be observed in gaseous combustion. Joulin & Clavin [44] 

extended Sivashinsky’s theory by considering the effect of heat loss. They found that 

with increasing heat loss the parameter range for the pulsating instability to occur 

increases and becomes accessible for gaseous combustion. This theoretical prediction 

was then experimentally verified by Gololobov et al. [46] in spinning acetylene 

decomposition flames. In addition, Joulin & Clavin [44] found that the cellular flame 

boundary Lec increases with increasing heat loss and approaches unity at the flame 

extinction limit. Sivashinsky [8, 47] further studied the nonlinear development of the 

disturbed flame front and derived an evolution equation for the amplitude of the 

perturbation for Le ≈ Lec, which is known as the Kuramoto-Sivashinsky equation. The 

nonlinear effect in the evolution of the disturbed flame is shown to be of a purely 

kinematic nature. Numerical integration of this equation shows that a disturbed planar 
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flame ultimately evolves into a cellular flame with cells being in a state of continual 

chaotic self-motion [48].  

 

1.2.3. Thermo-Acoustic Instability 

The combustion-driven thermo-acoustic instability results from the resonant coupling 

between the unsteady combustion process and the natural acoustic modes of the 

combustor [7]. Unsteady heat release generates acoustic waves which will then be 

reflected from the chamber walls and interact with the combustion process. Since the 

combustion process is sensitive to flow variations, a feedback loop is created and 

combustion instability may occur if the phase between the acoustic waves and the 

unsteady combustion satisfies certain conditions. A criterion for the emergence of 

thermo-acoustic instability was proposed by Rayleigh in 1878 [49]. It states that when 

heat is released locally and periodically in a gaseous fluid, an acoustic oscillation is 

amplified if the heat release and pressure oscillations are in phase with each other. 

Thermo-acoustic instability usually manifests in the form of sustained oscillations in 

pressure, heat release rate and flow rate. It caused serious problems during the early stage 

in the development of solid and liquid propellant rocket engines [50], and nowadays is 

still practically important due to the requirement for developing lean premixed 

combustors with low NOx emission, which are susceptible to instabilities [51]. Thus, it is 

one of the major concerns of the present study. 

While thermo-acoustic instability occurs as a consequence of the two-way 

coupling between the combustion heat release and acoustic waves, its theoretical 

description is usually approached by emphasizing one of the two-way processes in the 
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coupling mechanism, i.e. considering acoustics or combustion as the central process [52]. 

The former employs a wave equation for the reacting flows and derived a unified 

framework for the analysis of combustion oscillations. Thus, the difficulty in describing 

the response of the flame to acoustic wave modulation is avoided. The latter emphasizes 

the flame motion in an unsteady flow field and its response to flow perturbations. In its 

simplest form, the flame can be considered as a moving surface anchored at a specific 

location in a duct with a constant cross-section area, and hence can be described by the 

level-set equation, known as the G-equation [53]. Of particular interest is how the rate of 

heat release responds to an acoustic perturbation. This problem has been addressed by a 

number of studies [54-66]. Specifically, Fleifel et al. [54] studied the linear response of 

laminar premixed flames to flow oscillations under the assumption of constant flame 

speed. The results showed flame wrinkling in the form of convective wave is induced by 

flow oscillations. The response of the flame is evaluated by the flame transfer function 

defined as the ratio of the relative heat release oscillation to the relative flow oscillation. 

Its magnitude and phase depend primarily on the flame Strouhal number, which is 

defined as the oscillation frequency normalized by the ratio of the laminar flame speed to 

the duct radius. In terms of this number, high frequency perturbation passes through the 

flame while low frequencies induce stronger responses. Ducruix et al. [55] then 

conducted a measurement for the flame transfer function in an axisymmetric conical 

flame and compared the results with the theory. Good agreement was obtained for low 

perturbation frequencies. However, the phase difference showed increased discrepancy at 

larger frequencies. Schuller et al. [56] extended the theory of Fleifel et al. [54] to include 

the convective effects of the flow modulations propagating upstream of the flame and the 
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results showed improved agreement with the experiments. Dowling [57] studied the 

nonlinear response of a premixed ducted flame to velocity perturbations of large 

amplitude and examined, in particular, the nonlinear process that controls the finite 

amplitude of the heat release oscillations. It was found that once the amplitude of the 

velocity fluctuation exceeds its mean, i.e. when the flow velocity reverses, the oscillation 

in heat release rate saturates, leading to finite-amplitude limit cycles. This mechanism 

constitutes the major nonlinearity of the system. Lieuwen [58] further studied the 

nonlinear response to harmonic velocity perturbations, and showed that due to 

nonlinearities, the amplitude of the transfer function relative to its linear value decreases 

with increasing amplitude of the velocity perturbation. The nonlinearity is more evident 

for high frequency perturbations and for flames with more surface area close to the 

anchoring position. 

These analyses, however, assumed that the flame speed is constant, independent 

of flame stretch. This then implies that the heat release responds to flow oscillations only 

through modulations of the flame surface area. Since the local flame propagation speed 

and hence the local burning rate are actually affected by perturbations, it is reasonable to 

expect that oscillations of the heat release rate are correspondingly affected. In particular, 

since the wavelength of the flame wrinkling induced by the flow oscillation scales 

inversely with the perturbation frequency [54-56], variations in stretch-induced flame 

speeds are expected to become significant at high frequencies and responsible for some 

of the experimentally observed phenomena. For example, Baillot and co-workers [59-61] 

performed a systematic study of the response of Bunsen flames of methane–air mixtures 

to velocity oscillations of varying amplitudes and frequencies. It was found that, at low 



www.manaraa.com

 13

disturbance frequencies and small amplitudes, the flame front wrinkles symmetrically 

about the burner axis. At higher frequencies but similar low amplitudes, a phenomenon 

referred to as “filtering” was observed, wherein the flame wrinkling was evident only at 

the flame base and decayed with streamwise location downstream. Lieuwen [67] 

suggested that this behavior could result from the growing significance of flame speed 

variation along the flame due to the small radii and hence strong curvature of the flame 

wrinkles at high disturbance frequencies. It is noted that Baillot et al. [59-61] neither 

provided photographic images nor suggested the possible mechanisms responsible for 

this behavior. Thus, this dissertation will address this problem and study particularly the 

role of flame stretch through the curvature of the flame wrinkles on the premixed flame 

response to flow oscillations.  

 

1.3. Diffusion Flame Instabilities 

Unlike the instabilities in premixed flames, which may result from different mechanisms, 

instabilities in diffusion flames are mainly driven by thermal-diffusive effects [13]. Thus 

the discussion on diffusion flame instabilities will be limited in the scope of thermal-

diffusive instability. Furthermore, since these instabilities have been mostly observed 

near the extinction state, in the following we shall first discuss the extinction 

characteristics of diffusion flames, especially in the presence of radiative heat loss. Then, 

the experimental observations and theoretical analyses for the thermal-diffusive 

instability in diffusion flames will be presented. Finally, we will discuss forced flame 

oscillations in diffusion flames by the imposed unsteady flow variations and their 

coupling with the intrinsic flame oscillations driven by the thermal-diffusive instability. 
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1.3.1. Extinction Characteristics 

The structure and extinction characteristics of diffusion flames in the absence of 

volumetric heat loss were first rigorously analyzed using large activation energy 

asymptotics in a seminal paper by Liñán [68]. It is shown that the flame structure and 

response are primarily controlled by the system Damköhler number, Da, defined as the 

ratio of the diffusion time to the reaction time, and that there exists a minimum Da, and 

consequently a maximum flow rate, beyond which steady burning is not possible due to 

insufficient time for adequate reaction to occur in order to maintain the flame structure. 

This feature can be demonstrated by a plot of reactant leakage (or flame temperature) 

versus Da, as shown in Fig. 1.3. It is seen (from the lower branch) that as Da Ø ¶ the 

reactant leakage diminishes as a result of complete reaction. In this limit the chemical 

reaction with large activation energy occurs within an infinitely thin reaction zone. But 

with decreasing Da, the reaction zone thickens and the reaction becomes incomplete 

leading to an increase in the leakage of one or both reactants until the Damköhler number 

Da reaches the minimum value, Daext, which corresponds to the extinction state.  

Extinction can be further promoted in the presence of radiative heat loss [69-71]. 

In particular, because the extent of radiative loss increases with increasing flame volume 

and thereby flame thickness, and because flame thickness increases with decreasing flow 

rate and hence increasing Da, extinction is expected to be facilitated with increasing Da. 

Consequently, in addition to the extinction limit at the minimum Da, there should exist 

another extinction limit at a maximum Da, above which steady burning is also not 

possible. The possible existence of the dual extinction limits at lower and higher 
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Damköhler numbers, hereafter respectively referred to as the kinetic and radiative 

extinction limits, was first suggested and numerically demonstrated by T’ien et al. [72]. It 

was later theoretically confirmed by Chao et al. [73] using large activation energy 

asymptotics, and experimentally verified by Maruta et al. [5]. Their results are 

summarized in Fig. 1.4, in which the variation of the reactant leakage with Da in the 

presence of radiative loss is plotted. It is seen that with increasing Da from the kinetic 

extinction limit, DaE,K, the reactant leakage first decreases as a result of increased 

reaction rate, and then increases as a result of increased radiative heat loss, and finally 

reaches the radiative extinction limit, DaE,R. Thus, steady burning is only possible within 

a limited range of Da, namely DaE,K < Da < DaE,R. Although so far this feature has been 

analyzed in a couple of papers [5, 72-76], a rigorous theoretical description for the 

radiation-affected diffusion flames has not been attempted. Specifically, these analyses 

[72-75] missed considering the excess/deficiency of the total enthalpy in the reaction 

zone, hereafter referred to as the excess enthalpy [77]. Although inclusion of the excess 

enthalpy does not lead to qualitative differences in the extinction results, it has been 

shown that it is a crucial element in the study of thermal-diffusive instability in diffusion 

flames [13]. Furthermore, these analyses adopted either unity [73-74] or near-unity [75] 

reactant Lewis numbers, which apparently are not appropriate for the study of thermal-

diffusive instability that is usually driven by the non-unity reactant Lewis numbers. Thus, 

in this dissertation a rigorous analysis of the extinction characteristics of radiation-

affected diffusion flames will be first presented prior to the study of thermal-diffusive 

instability. 

 



www.manaraa.com

 16

1.3.2. Thermal-Diffusive Instability 

1.3.2.1. Experimental Observations 

The earliest observation of diffusion flame instability is probably by Gardisde & Jackson 

[24]. They observed that the surface of a hydrogen-air jet flame was formed of triangular 

cells in the shape of a polyhedron at relatively high flow rates when the hydrogen was 

sufficiently diluted with nitrogen or carbon dioxide. The cells at the base of the flame 

were approximately 0.7 cm in width. Later, Dongworth & Melvin [25] carried out 

experiments using a splitter-plate burner and observed a cellular appearance at the base of 

a hydrogen–oxygen diffusion flame at sufficiently high flow velocities and when the 

hydrogen is diluted with nitrogen or argon, but not with helium. The cells were about 1 

cm in length. Ishizuka & Tsuji [26] reported a similar behavior in a counterflow 

hydrogen–oxygen diffusion flame. They observed that when hydrogen, injected through 

the wall of a porous cylinder in a vertically approaching uniform air stream, is diluted 

with a heavier gas, such as nitrogen or argon, the diffusion flame surface that is normally 

wrapped around the cylinder breaks up into stripes and leaves regularly spaced 

extinguished regions along the cylinder axis. These observations were rather accidental 

discovery than intended realization from systematically designed experiments. Chen et al. 

[27] were the first to systematically study the occurrence of cellular diffusion flames in a 

variety of fuels and diluents and for various initial mixture strengths, defined as the fuel-

to-oxidizer mass fraction ratio in their respective supplying streams normalized by the 

mass-weighted stoichiometric coefficient ratio. They found that far from extinction, no 

flames develop cellular or striped structures. Cellular flames were formed at near-

extinction conditions when the Lewis number of the more completely consumed reactant 
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was sufficiently less than unity. Depending on the conditions, the observed cells have the 

dimension of about 0.7-1.5 cm. Lo Jacono et al. [28] then studied hydrogen–oxygen jet 

flames diluted with carbon dioxide and examined, in particular, the influence of  the 

initial mixture strength on the formation of the cellular flames. It was found that the 

parameter space for the cellular instability increases with decreasing initial mixture 

strength. Furthermore, for a given initial mixture strength, several cellular states were 

found to co-exist near the extinction limit, and the preferred number of cells decreased 

with decreasing Damköhler number. Recently, Lo Jacono et al. [29] introduced a porous 

plug counter-diffusion (PPCD) burner, which is able to produce a one-dimensional 

unstrained planar flame and hence facilitates the direct comparison of experiments with 

theory and simulation. Utilizing this burner, similar results as those in Lo Jacono et al. 

[28] were obtained. 

In addition to the cellular patterns in diffusion flames, flame oscillations have also 

been reported in experiments involving a variety of configurations. Chan & T’ien [1] 

conducted experiments for a range of condensed-phase (liquid and solid) fuels, such as 

kerosene, heptane, ethanol, methanol and polyethylene, in different flame geometries. In 

most cases, spontaneous flame oscillations that last a couple of cycles with increasing 

amplitude were observed before flame extinction. Similarly, Ross et al. [2] observed 

oscillations in candle flames near the extinction limit in microgravity condition.. 

Nayagam & Williams [3] conducted experiments for microgravity droplet flame in the 

Space Shuttle. Relatively persistent flame oscillations of eight cycles were observed 

before extinction in the weak transport limit. Thus, this flame oscillation appears to be 

triggered near the radiative extinction limit induced by the excessive radiative loss at 
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large Da. Recently, Füri et al. [4] systematically studied the conditions for the onset of 

near-limit flame oscillations in gaseous jet diffusion flames. It was found that the reactant 

Lewis numbers and the initial mixture strength are the key parameters governing flame 

oscillations. The tendency for flame oscillations to occur increases with decreasing initial 

mixture strength and increasing reactant Lewis numbers, which are typically larger than 

unity.  

 

1.3.2.2. Theoretical Analysis 

The above experimental observations suggest that instability analysis in diffusion flames 

is more complex than its counterpart in premixed flames, although many of the traits 

observed are quite similar. First, unlike premixed flames, which is characterized by a 

single Lewis number, for diffusion flames there are two effective Lewis numbers, LeF 

and LeO, associated with the fuel and oxidizer, respectively; the different individual role 

they play in the stability consideration has been confirmed by the experiments [27]. 

Second, all cellular and pulsating flames were observed near the extinction state, 

implying that the flow conditions, i.e. the Damköhler number, Da, is an important 

parameter that controls, among others, the onset of flame instability. Third, the initial 

mixture strength, φ, was shown to play an essential role in the development of instability, 

especially in the determination of the specific mode of thermal-diffusive instability. For 

example, cellular and pulsating instabilities have been shown to be more likely to form at 

larger and smaller φ, respectively. Finally, other parameters, such as the temperature 

differential between the supplying streams of the fuel and oxidizer, ∆T, and the radiative 

heat loss, may also have important effects on flame instability behaviors. Therefore, a 
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complete theory on the stability of diffusion flames needs to take all these parameters into 

consideration, and hence tends to be more complex than that of premixed flames. 

Consequently, compared to the well-understood premixed flame instabilities, there have 

been relatively few theoretical investigations of diffusion flame instabilities. Kirkby & 

Schmitz [30] examined numerically the response of a planar diffusion flame to one-

dimensional perturbations, and were the first to show that flame oscillations resulting 

from the thermal-diffusive instability may develop when the Lewis numbers are greater 

than unity and/or there is appreciable heat loss. Cheatham & Matalon [31-32] studied the 

dynamics of a spherical diffusion flame in a reduced oxidant environment. They 

identified that spontaneous flame oscillations can be triggered either by sufficiently large 

Lewis numbers (even without heat loss) or by excessive heat loss (even for unity Lewis 

numbers). The predicted oscillation frequency is typically of the order of 1 Hz, which is 

consistent with the experiments. The first theoretical study of the cellular mode of 

thermal-diffusive instability in diffusion flames is by Kim et al. [33]. They performed a 

linear stability analysis for a one-dimensional convective-diffusive diffusion flame using 

large activation energy asymptotics. The Lewis numbers of the fuel and oxidizer were 

assumed to be identical and sufficiently smaller than unity. The initial mixture strength 

was fixed at unity and convection was towards the oxidizer. However, the derived 

dispersion relation shows that the characteristic size of the cells at the onset of instability 

is comparable to the thickness of the reaction zone, which is much smaller than the 

expected diffusion length scale. Thus, in follow-up studies, Kim [34-35] adopted near-

unity Lewis numbers, namely 1 − Le ~ O(β–1), and claimed that the development of cells 

with the critical size of diffusion length scale is only possible under this limit and near 
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extinction condition, namely DaCr − Daext ~ O(β−1), where DaCr is the critical Damköhler 

number corresponding to the marginally stable state and Daext is the extinction 

Damköhler number.  

The most comprehensive theory of the diffusion flame dynamics was proposed by 

Cheatham & Matalon [36], in which all the above mentioned parameters, LeF, LeO, φ, ∆T, 

and Da, are taken into consideration in the limit of large activation energy for a one-step 

overall reaction. By resolving the internal structure of the reaction zone, Cheatham & 

Matalon [36] derived the required conditions for the determination of the temperature and 

mass fractions of the fuel and oxidizer, as well as the instantaneous shape of the reaction 

sheet, in the form of jump and leakage conditions. The stability analysis of a planar flame 

using this model shows that flames with infinitely fast reaction (Da → ∞) or unity 

reactant Lewis numbers (LeF = LeO = 1) are unconditionally stable. The cellular 

instability with critical cell size comparable to the diffusion length scale tends to occur in 

“fuel-lean” systems for Daext < Da < DaCr, where the critical Damköhler number satisfies 

DaCr − Daext ~ O(1), which is different from the results of Kim [33-35]. However, smaller 

cells that scale on the thickness of the reaction zone are also possible near extinction 

conditions, i.e. DaCr ≈ Daext. This model was then utilized by Kukuck & Matalon [37] to 

study the onset of flame oscillations in a planar diffusion flame. The results show that 

oscillations develop when the Damköhler number is sufficiently small, namely at near-

extinction conditions, and when the reactant diffusing against the stream is more 

completely consumed and the corresponding Lewis number is sufficiently large, typically 

larger than one. The effect of radiative heat loss was also studied and it was shown that 

increased heat loss enhances the onset of instability. The predicted oscillation frequency 
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is typically 1 – 6 Hz. However, high frequency oscillations are also possible just prior to 

extinction. 

The above investigations confirmed the experimental observations [1-4, 24-29]. 

Matalon [13, 38] unified the above theoretical results in a fuel-oxidizer Lewis number 

parameter plane, as shown in Fig. 1.5. The occurrence of the specific mode of thermal-

diffusive instability is related to two parameters, hf and γ. The parameter hf, also referred 

to as the excess enthalpy, represents the available enthalpy in the reaction zone. As 

shown in Fig. 1.5, the curve hf = 0 separates regions of excess (below the curve) and 

deficiency (above the curve) in available enthalpy and always includes the point, LeF = 

LeO = 1. It is seen that hf is always negative when both Lewis numbers are smaller than 

unity, and positive when they are larger than unity or either of them is sufficiently large. 

The parameter γ represents the effective mixture strength in the reaction zone and varies 

from negative values for lean conditions, to positive values for rich conditions. Thus, the 

line γ = 0 separates regions of relatively lean (to the left) or rich (to the right) mixtures. 

The entire parameter plane is divided into several regions by hf = 0 and γ = 0, and 

different types of instability are expected in different regimes. Stationary cells are 

primarily observed in fuel lean systems (γ < 0) when there is excess in available enthalpy 

(hf > 0). The characteristic cell size is comparable to the diffusion length scale. However, 

as γ ∼ 0, i.e. for near stoichiometric conditions, the cells are much smaller and scale on 

the reaction zone thickness AR = β–1AD. Kim’s analysis [33] falls into this regime as a 

result of the limited parameters used (γ  slight larger than 0). In this case, perturbation 

intrudes into the reaction zone and a separate analysis that incorporates small wavelength 
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perturbations evolving on the fast time scale, tR = β–2tD, is required [78]. These high-

frequency modes, also referred to as ‘fast-time’ instabilities, are limited to conditions 

very near the extinction limit, namely DaCr º Daext, whereas ordinary cells with 

characteristic size comparable to the diffusion length are predicted to occur over a wider 

range of Damköhler number, namely DaCr – Daext ~ O(1). In contrast to the stationary 

cells, flame oscillations tend to develop in fuel rich systems (γ > 0) with deficiency in 

enthalpy (hf < 0). When the Lewis numbers of the two reactants are larger than one, or 

one of them is near or even below one and the other sufficiently larger than one, the 

fastest growing mode corresponds to the zero wavenumber resulting in planar oscillations. 

For small LeF, the fastest growing mode corresponds to a finite wavenumber. Thus, the 

oscillating cell is also a possible mode of thermal-diffusive instability in diffusion flames, 

although it will not be discussed in this dissertation. Finally, the competing modes of 

instability are also possible in the domain separating these regimes, as shown in Fig. 1.5.  

The above linear analyses provide a rather detailed map for the occurrence of 

thermal-diffusive instability in diffusion flames. However, they are only concerned with 

the initial growth of flame instabilities under infinitesimal perturbations. As the 

perturbations grow to finite amplitude, nonlinear effects become important and may limit 

the further growth of perturbations. As such, the flame behavior subsequent to the onset 

of flame instabilities must be determined by a nonlinear analysis. In addition, these 

studies are primarily focused on flame instabilities near the kinetic extinction limit in 

adiabatic or weakly radiative diffusion flames. As we have shown, in the presence of 

substantial radiative heat loss, there exist dual extinction limits, namely kinetic and 

radiative limits, at small and large Damköhler numbers, respectively. Being near-limit 
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phenomena, flame instabilities in diffusion flames are expected to develop near both 

extinction limits and the instabilities near these limits are also expected to possess 

different behavior, as evident by the experiment of Nayagam & Williams [3]. Therefore, 

this dissertation will address these two aspects of flame instabilities, and study, in 

particular, the nonlinear behavior of flame oscillations in adiabatic diffusion flames and 

the occurrence of flame oscillations near the radiative extinction limit in radiation-

affected diffusion flames. 

 

1.3.3. Flame Response to Flow Oscillations 

The flame oscillations studied in the above investigations arise intrinsically as a result of 

thermal-diffusive instability in diffusion flames. However, flames are often subjected to 

unsteady flow oscillations imposed either by the random motion of eddies in turbulence 

or by the system acoustics. Thus, the response of flames to flow oscillations has received 

considerable attention during the past few years. The studies primarily emphasized on the 

effects of strain rate oscillations [86-93]. In particular, results on diffusion flames show 

that the flame response becomes more sensitive to the imposed oscillations when the 

otherwise steady flame is near its extinction limit; whereas for flames far from extinction 

the flame response is attenuated monotonically as the frequency of the imposed 

oscillation increases. Consequently, unsteady flames can withstand higher strain rates at 

higher frequencies than at lower frequencies. However, among these investigations, 

theoretical ones are relatively few. Strahle [86] studied the convective droplet burning at 

a stagnation point under the influence of small amplitude sound wave from the free 

stream. Im et al. [92] analyzed the response of counterflow diffusion flames to 



www.manaraa.com

 24

monochromatic oscillatory strain rates using large activation energy asymptotics. 

Attention was focused on near extinction conditions so that the time scale of the imposed 

unsteadiness is comparable to that of diffusive transport. The results of Im et al. [93] 

suggest that the unsteady characteristics of the near-extinction diffusion flame can be 

significantly different from those in the reaction-sheet limit. 

These earlier studies, however, have not addressed the important issue of 

resonance. That is, combustion systems may exhibit intrinsic oscillations and these 

oscillations may then interact with the imposed flow oscillations so that the flame 

responses could be significantly different. Furthermore, if considering the intrinsic 

oscillations, those thermal-diffusively unstable flames could extinguish at a larger 

Damköhler number corresponding to the marginally stable state, DaCr, also denoted as the 

dynamic extinction Damköhler number, instead of at the static extinction Damköhler 

number, Daext, considered in previous studies. Thus, in this dissertation we shall address 

this specific problem and study, in particular, the possible resonance between the intrinsic 

and forced flame oscillations for flames with Damköhler number close to the dynamic 

extinction (stability) limit, DaCr. 

 

1.4. Objectives and Outline 

As reviewed in the previous section, this dissertation addresses the following flame 

oscillation and extinction problems. 

First, in Chapter 2 we carry out a systematic nonlinear analysis for flame 

oscillations in chambered planar diffusion flames without volumetric heat loss. This 

analysis is based on the linear analysis of Kukuck & Matalon [37]. A bifurcation analysis 
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near the neutral stability limit is conducted and a nonlinear evolution equation of the 

Landau type for the amplitude of perturbation is derived. The various possible burning 

regimes are then mapped in parameter space 

In Chapter 3, this analysis is extended to incorporate imposed flow oscillations 

and studies, in particular, their coupling with intrinsic oscillations. The linear response of 

flames to the imposed oscillations is first examined and the resonant coupling between 

the forced and intrinsic flame oscillations is identified. Then the nonlinear response is 

examined by deriving an evolution equation for the amplitude of flame response. 

The analysis for flame oscillations in diffusion flames is extend to radiation-

affected flames. Due to the absence of a rigorous theory for the dynamics of radiation-

affected diffusion flames with the proper consideration of the excess enthalpy, in Chapter 

4 we shall first develop a model for planar diffusion flames with distinct reactant Lewis 

numbers and radiative heat loss. This model is then utilized to systematically study the 

dual extinction characteristics of a counterflow diffusion flame.  

In Chapter 5, using the above model the linear analysis for the flame oscillations 

in diffusion flames is extended to the radiation-affected flames. A dispersion relation 

relating the perturbation growth rate to the system parameters and radiative loss is 

derived. Using this dispersion relation, flame oscillations near both the kinetic and 

radiative extinction limits are studied and the role of radiative loss in the development of 

flame oscillations is identified. 

In Chapter 6, the study on flame oscillations is extended to premixed flames. 

Motivated by understanding the driving mechanism of the thermo-acoustic instability, we 

study the linear response of a wedge-shaped flame to harmonic flow oscillations, and in 
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particular, examine the effects of flame stretch on the flame transfer function. An 

approximate but sufficiently accurate analytical solution for the perturbed flame location 

and the flame transfer function are first derived. Two nondimensional parameters 

characterizing the effects of flame stretch are then isolated by expanding the solutions in 

the limit of weak stretch.  

Finally, in Chapter 7 we summarize the work and present recommendation for 

future research.  
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1.5. List of Publications 

A good part of the dissertation research has been either published or accepted for 

publication. The materials contained in them are distributed in the dissertation, as follows. 

Chapter 2: Wang, H. Y., Bechtold, J. K. and Law, C. K., “Nonlinear Oscillations in 

Diffusion Flames”, Combust. Flame 145: 376-389 (2006). 

Chapter 3: Wang, H. Y., Bechtold, J. K. and Law, C. K., “Forced Oscillation in Diffusion 

Flames near Diffusive-Thermal Resonance”, Int. J. Heat Mass Transfer (2007) 

(In press). 

Chapter 4: Wang, H. Y., Chen, W. H. and Law, C. K., “Extinction of Counterflow 

Diffusion Flames with Radiative Heat Loss and Nonunity Lewis Numbers”, 

Combust. Flame 148: 100-116 (2007). 

Chapter 5: Wang, H. Y. and Law, C. K., “On Intrinsic Oscillation in Radiation-Affected 

Diffusion Flames”, Proc. Combust. Inst. 31: 979-987 (2007). 

Chapter 6: Wang, H. Y., Preetham, Kumar, T. S., Lieuwen, T. and Law, C. K., “Linear 

Response of Stretch-Affected Premixed Flames to Flow Oscillations”, 

submitted for publication. 
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Figure 1.1. Shemataic showing the mechanism of hydrodynamic instabilitiy. 
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(a) Cellular instability  

 

 

(b) Pulsating instability 

 

Figure 1.2. Shemataic showing the mechanism of thermal-diffusive instabilities. Figures 

are adapted from Ref. 53. 
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Figure 1.3. Variation of the reactant leakage with the Damköhler number, Da. 
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Figure 1.4. Variation of the reactant leakage with the Damköhler number, Da, in the 

presence of radiative heat loss. 
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Figure 1.5. Diagram illustrating typical instability modes in the fuel-oxidizer Lewis 

number parameter plane. This figure is adapted from Ref. 13. 
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Chapter 2: Nonlinear Oscillations in Diffusion Flames 

 

2.1. Background 

In this chapter, we carry out a systematic nonlinear stability analysis for flame 

oscillations in chambered planar diffusion flames. As reviewed in the previous section, 

the theoretical description of diffusion flame dynamics is more complicated than that of 

premixed flames due to the large number of parameters involved. This is even more 

severe when considering the nonlinear behavior of flame instabilities due to the 

mathematical difficulties in analyzing the reaction zone structure. Therefore, up to now, 

only one theoretical work [1] and a few numerical investigations [2-7] have addressed the 

nonlinear behavior of diffusion flame instabilities. Specifically, Cheatham [1] derived an 

evolution equation for the perturbation amplitude in a droplet flame by employing a 

weakly nonlinear theory, and provided a diagram mapping various possible long time 

behaviors. Three possible modes of flame oscillations were identified: the perturbation 

may damp; it may become unbounded in finite time; or it may approach a constant 

amplitude. Lee & Kim [2-3] numerically investigated the nonlinear dynamics of striped 

diffusion flames formed in the counterflow field, with Lewis numbers sufficiently smaller 

than unity. Their results show that the 2D stripe flame structure is able to survive 

Damköhler numbers significantly below the static extinction Damköhler number of 1-D 

flame structure, due to the enhanced reaction intensity in the reaction segments by the 

excessive diffusion of reactants from the quenched segments. Hysteresis was also 

predicted. Sohn et al. numerically studied the nonlinear evolution of oscillations triggered 
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by non-unity Lewis numbers [4] and radiative heat loss [5] in a diffusion flame 

established in a stagnant mixing layer. The Lewis numbers were assumed sufficiently 

greater than unity, and their work showed that the flame oscillation was amplified if the 

initial Damköhler number Da  was smaller than the critical Damköhler number, DaCr On 

the other hand, when Da > DaCr, the oscillation was damped unless the perturbation of 

the initial Damköhler number was sufficiently large, in which case a subcritical 

bifurcation to growing oscillations took place. No limit cycle behavior was predicted in 

the absence of radiative heat loss. Christiansen et. al. [6] simulated the transient behavior 

of burner-supported spherical diffusion flames using detailed chemistry and transport. 

Their results show that, when Da < DaCr, the amplitude of oscillations always increased, 

and eventually led to extinction when the amplitude became too large. No limit cycle 

behavior was observed.  

While the numerical studies discussed above have revealed some interesting 

phenomena about the nonlinear evolution of flame instabilities, the parameters employed 

in these studies were very limited. Thus, a nonlinear stability analysis near the bifurcation 

point (stability limit) will be conducted in this chapter to understand more details of the 

nonlinear characteristics of flame oscillations over a wider parameter range.  

 

2.2. Formulation 

We consider a simple configuration of a planar flame in a chamber [7-8]. As shown in 

Fig. 2.1, the fuel stream is fed from the bottom of a long channel at a constant velocity, 

normalized to unity. The oxidizer diffuses against the fuel stream from a fast cross-stream 

at the top of the chamber. The fast oxidizer stream maintains constant conditions at the 



www.manaraa.com

 41

top of the chamber by carrying away the combustion products reaching there. We employ 

the asymptotic theory of Cheatham & Matalon [7] in which the convective-diffusive 

equations for temperature and fuel and oxidizer mass fractions are solved on either side 

of the flame surface, xf. These quantities are then related across the flame using the 

matching conditions obtained by asymptotic analysis of the reaction zone. Assuming 

constant physical and chemical properties of reactants, constant density, and one-step 

irreversible chemical reaction, the appropriate nondimensional governing equations can 

be written as [7] 
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where T is the temperature and FY and OY  are the mass fractions of the fuel and oxidizer, 

respectively. The Lewis numbers of the fuel and oxidizer, LeF and LeO, are assumed 

larger than unity in order to focus on the pulsating instability.  

The boundary conditions are 

01 === ∞− OF YYTT       as −∞→x    (2.4) 

10 −
∞− ==∆+= φOF YYTTT    at 0=x    (2.5) 

where ∞−∞ −=∆ TTT  is the difference between the temperatures at the oxidizer and fuel 

boundaries, and φ is the initial mixture strength, defined as the ratio of the fuel mass 

fraction at the fuel boundary to the oxidizer mass fraction at the oxidizer boundary 

normalized by the mass-weighted stoichiometric coefficient ratio, i.e.  
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where iν  and Wi respectively denote the stoichiometric coefficient and molecular weight 

of species i (i = F, O), and the over-tilde “~” designates the unscaled Yi for differentiation 

with their nondimensional counterparts. 

The derived jump relations at the reaction sheet location fx  are [7] 
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where we have adopted the notation [ ] )()( −+ −= ff xTxTT . Expressions for the amount of 

leakage of the reactants through the reaction sheet have been given as [7] 
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where β is the Zeldovich number and approximate formulas for the quantities SF and SO 

have been determined through curve fitting [7]. The specific form of these formulas 

relevant to the present investigation will be presented shortly. These quantities depend 

only on two parameters γ and ∆. Here,  
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represents the excess of heat conducted away to one side of the reaction sheet from the 

total heat generated by the chemical reaction, and  
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is the reduced Damköhler number which measures the intensity of chemical reaction, 

where 
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are the excess/deficiency in the fuel and oxidizer enthalpies, respectively, evaluated at the 

reaction sheet. Furthermore, the subscript “1” denotes the )( 1−βO  expression in a power 

series expansion in terms of 1−β , and the superscript +/- denotes quantities on the 

oxidizer/fuel side of the reaction sheet. The term 2/)1(2/)1( FO hh γγ −++  in Eq. (2.11) 

represents the excess/deficiency in the total enthalpy in the reaction region, as mentioned 

in Chapter 1. It comes from the imbalance of diffusion for chemical and thermal energies 

as the reactants leak through the reaction zone. We note that, if the Lewis numbers are 

unity, the enthalpy variables are conserved scalars and hence hF and hO are both zero. The 

heat transfer parameter, γ, measures the degree of asymmetry of thermal diffusion across 

the reaction zone. If γ = 0, the temperature profile is symmetric and hence heat is 

conducted to the fuel and oxidant sides equally. As γ > 0, more heat is conducted to the 

oxidant side and consequently the oxidant is more completely consumed, so that the 

reaction is relatively “fuel-rich”. Similarly, it is “fuel-lean” as γ < 0. 

Figure 2.2 shows SF and SO as a function of ∆. Solutions are seen to exist only 

when c∆≥∆  and for each c∆>∆  there exist two distinct solutions characterized by 
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different extent of reactant leakage (and flame temperature). The critical value c∆  

depends only on γ  and was first determined by Liñán [9] as 

( ) ( ) ( ) ( ){ }432 1055.0126.011 γγγγ −+−+−−−=∆ ec  

Approximate formulas for the leakage function S1 and S2 in Fig. 2.2 were given in [7]. 

These formulas differ depending on whether we are discussing the top or bottom branch, 

and are given by 
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where the top line in the bracketed expressions corresponds to the solution of the lower 

branch in Fig. 2.2 and the bottom line to the upper branch. The coefficients ai, bi, qi and ri 

depend only on γ and are given in the appendix of [8]. For γ  > 0, S1 and S2 correspond to 

SF and OS  and for γ < 0 to SO and SF, respectively. For definiteness, we shall restrict our 

discussion to the case γ > 0 and thus only the expressions corresponding to the lower 

branch of Fig. 2.2 are needed. The appropriate coefficients are  
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2.3. The Basic State and Linear Stability Analysis 

The above system possesses the following steady-state solutions: 
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where the reaction-sheet location fx  is given by 
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and the location of the stoichiometric flame surface fξ  corresponding to the reaction-

sheet limit is given by 

)1ln( 11 −− +−= φξ Of Le     (2.13) 

Note that, in constructing these solutions, it is necessary to include the terms of )( 1−βO  

since the complete determination of the overall flame response requires that the 

excess/deficient enthalpies to be known. The steady-state solutions (2.12) give the flame 

temperature 
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where the adiabatic flame temperature is 

( ) feTTT ξ11ad −∆++= ∞−  

The quantities γ, hF and hO can now be determined from the above solutions as  
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Finally, the relationship between ∆ and Da is found to be 
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    (2.15) 

It is clear that, when 1== OF LeLe , the excess/deficiency enthalpies are zero, and Eq. 

(2.15) reduces to ∆ = 4Da. For general Lewis numbers, however, the excess/deficiency 

enthalpy results in an implicit relation between ∆ and Da. As a consequence, the turning 

point for ∆ in Fig. 2.2 does not correspond to the turning point for Da, indicating that ∆c 

does not correspond to the physical extinction point. This feature was discussed in detail 

by Kim & Williams [10].  

The linear stability of the above solutions has been investigated by Kukuck & 

Matalon [8], who identified critical conditions for the onset of pulsating instability. The 

instability was found to arise at a value of Damköhler number exceeding its quasi-steady 
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extinction value. This is illustrated in Fig. 2.3 where we show a typical response curve in 

the Tf ~ Da plane.  The subscripts ‘ext’ and ‘Cr’ denote the points corresponding to the 

quasi-steady extinction and the onset of instability, respectively. The point denoted by 

Dac in Fig. 2.3 represents the point at which the parameter ∆ has a turning point, i.e. ∆ = 

∆c in Fig. 2.4. As remarked earlier, the physical turning point of Da may differ 

significantly from cDa  for non-unity Lewis numbers.  Figure 2.3 also shows that the 

onset of instability occurs at the Damköhler number DaCr prior to but near extinction, and 

in general )1(~extCr ODaDa −  [8]. The planar flame with Damköhler number Da greater 

than DaCr on the upper branch of the Tf ~ Da response curve is stable. Thus, between the 

two possible solutions for a given Da > DaCr, the stable solution is the one corresponding 

to the larger flame temperature and smaller reactant leakage. The imaginary part of the 

growth rate is non-zero at the threshold, and therefore pulsating instability develops when 

Daext < Da < DaCr. 

We shall now summarize several other results from the linear analysis [8] that 

will help guide our choice of parameters to exploit in the nonlinear analysis. The range of 

instability extextCr )( DaDaDa −  depends on the four prescribed parameters: LeF, LeO, φ 

and ∆T. Among them the initial mixture strength φ has the most pronounced effect. The 

range of instability extextCr )( DaDaDa −  increases dramatically with φ indicating that 

“fuel-rich” flames are more susceptible to pulsating instability. The effect of the Lewis 

number of oxidizer LeO on extextCr )( DaDaDa −  is moderate compared to φ but the 

general trend is that extextCr )( DaDaDa −  increases with LeO. For a given LeO, the 

instability is only possible for a range of the fuel Lewis number LeF. The results [8] also 
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show that instability occurs when the oxidizer, acting as the reactant diffusing against the 

convection, is the more completely consumed reactant, such that the reaction zone burns 

“fuel-rich”. Thus, for example, the instability can be triggered by heating the fuel, i.e. 

decreasing ∆T.  

 

2.4. Derivation of Evolution Equation 

A weakly nonlinear analysis is now carried out to derive an evolution equation for the 

amplitude of a perturbation. The Damköhler number Da is chosen to be very close to the 

critical Damköhler number DaCr corresponding to the marginally stable state.  Thus we 

introduce the small bifurcation parameter, ε , as  

Cr

Cr2'
Da

DaDas −
=ε  

where 1'=s  for Da > DaCr and 1' −=s  for Da < DaCr. We also retain the “fast time” t, 

associated with the oscillation of flames, and introduce a “slow time” τ , associated with 

the long time transient behavior. Furthermore, since planar perturbation corresponds to 

the fastest growing mode of instability, we introduce small 1D perturbations, with 

amplitude 1<<ε , superimposed onto the steady state solutions identified below by the 

subscript “b”: 
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where u, v, w and l are the perturbation functions of temperature, fuel mass fraction, 

oxidizer mass fraction and flame sheet location, respectively. The slow time variable τ  is 

defined as tωτ = , where )(εω  is a small frequency parameter. 

Substituting Eqs. (2.16)-(2.19) into Eqs. (2.1)-(2.3) yields the governing equations 

for perturbations in the convective-diffusive zone 

0=+−+ τωuuuu xxxt     (2.20) 
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01 =+−+ −
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The above Eqs. (2.16)-(2.19) are also inserted into the boundary and jump conditions 

(2.4)-(2.7) which, when expanded for small ε , take the form  
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respectively. We note that the only nonlinearity in the model arises in the leakage 

conditions (2.8) and (2.9), which when expanded around the steady state, have the form: 
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where ∆b is the reduced Damköhler number evaluated at the steady state condition. 
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We expand the variables u, v, w and ω  in a power series in ε, 

∑
∞

=

=
0

),,(),,(
m

m
mmm wvuwvu ε  and ∑

∞

=

=
1m

m
mεωω , respectively, and expand the governing 

equations, boundary, jump and leakage conditions for perturbations (2.20)-(2.27) in terms 

of ε. We obtain a system of equations to be solved at each order: 
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with boundary conditions 

0=== mmm wvu       at x = 0 and as −∞→x    (2.29) 
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and leakage conditions 
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where m = 0, 1, 2,… and 
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where Cr,b∆  corresponds to the value at the marginally stable state. The form of the 

inhomogeneous terms Fmα  and Omα  will be presented shortly. At leading order 0=m , 

000000 ===== OFrqp αα , and we recover the homogeneous linear problem, such that 

the solutions are given as 
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xxccticxA
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000 τ
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   (2.34) 

Here c.c. means the complex conjugate, 0c  is the frequency of oscillation at the onset 

of instability, and 

( )[ ]xLeCx JJJJ λ+=Φ −− 2/exp)(  

( )[ ] ( )[ ]{ }xLexLeCx JJJJJJ λλ −−+=Φ ++ 2/exp2/exp)(  

where OFTJ ,,=  corresponds to the solutions of 0u , 0v  and 0w , respectively, and we 

have employed the notation 

0
2 4

2
1 ciLeLe JJJ +=λ  

with 1=TLe . The constants ±
JC  are determined by the linear system (2.A1) given in the 

appendix, established from the jump & leakage conditions for the leading order 

perturbations. The amplitude function )(τA , which is a function of slow time τ , is 

determined by going to higher orders in our perturbation scheme. At each order, solutions 

exist only if appropriate solvability conditions are satisfied, and thus we introduce the 

adjoint system: 
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with boundary conditions 
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The solutions to the adjoint problem (2.35) are 
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where J = T, F, O 

( )[ ]xLeEx JJJJ λ+−=Ψ −− 2/exp)(  
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( )[ ] ( )[ ]{ }xLexLeEx JJJJJJ λλ −−−+−=Ψ ++ 2/exp2/exp)(  

Here Jλ  is the complex conjugate of Jλ  and the constants ±
JE  are determined by the 

linear system (2.A2) given in the appendix. 

At )(εO ,  

[ ]22
0

22
11 )(2..)2exp()(

2
1 AFccticAFb jj Φ++Φ=α  

where j = F, O, 













∆∂

∆∂
∆+

∆∂

∆∂
∆−= 2

Cr,
2

2
Cr,

Cr,
Cr,1

),(),(

b

bj
b

b

bj
bjj

SS
Leb

γγ
, 

and the function )(ΦF  is defined as 

{ } { })()(
2

1)()(
2

1)( 11
fFFfTfOOfT LeLeF ξξγξξγ +−+−−− Φ+Φ

−
+Φ+Φ

+
=Φ  

The solutions to the )(εO  perturbations are given as 







>Ω++Θ

<Ω++Θ
=

++

−−

fJJ

fJJ

xxxAccticxA

xxxAccticxA
wvu

),(..)2exp()(

),(..)2exp()(
),,(

2
0

2

2
0

2

111   (2.37) 

where J = T, F, O, 
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and the constants ±
JB  and ±

JD  are determined by the linear system (2.A3) and (2.A4), 

respectively, given in the appendix. The solvability condition at )(εO  produces 01 =ω . 
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Applying the solvability condition at this order provides the following evolution equation 

for the amplitude of the perturbation 
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where the new slow time τ2=ε2t  and the coefficients are given by 
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The above evolution equation is a classical equation of the Landau type. We 

construct solutions by first writing the perturbation amplitude A in polar form and 

separating 1α  and 2α  into their real and imaginary parts: 

)](exp[)( 22 τθτ iRA =  

irir ii 222111 , αααααα +=+=  

The complex amplitude Eq. (2.38) can now be expressed as two real equations: 

0' 3
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0' 3
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where the prime denotes differentiation with respect to 2τ . The solutions to Eqs. (2.39) 

and (2.40) are 
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respectively, where )0(R and )0(θ  are the initial magnitude and polar angle, respectively. 

Equation (2.41) indicates that the long time behavior of the amplitude )( 2τR  depends 

only on the coefficients r1α  and r2α  and the initial condition R(0). When r1α >0 and 

r2α >0, Eq. (2.41) indicates 0)( 2 →τR  as ∞→2τ . Hence this case corresponds to a 

stable basic state solution. When r1α >0 and r2α <0, the long time behavior of the 

amplitude )( 2τR  depends on its initial condition )0(R . If rrR 21
2 /)0( αα< , then 

0)( 2 →τR  as ∞→2τ , whereas if rrR 21
2 /)0( αα> , then ∞→)( 2τR  at a finite time 

given by   
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When r1α <0 and r2α <0, again we find that ∞→)( 2τR  at the time given by Eq. (2.42). 

Finally, when r1α <0 and r2α >0, the solution (2.41) approaches a constant 

rrR 212 /)( αατ →  as ∞→2τ , corresponding to a limit cycle.  The three possible 

burning regimes are mapped out in the r1α - r2α  parameter plane in Fig. 2.5. The long 

time behavior as a function of the four parameters LeF, LeO, φ and ∆T will be discussed 

next.  
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2.5. Results and Discussion 

Our results demonstrate that the long time behavior of the chambered diffusion flame 

depends on the two coefficients r1α  and r2α  of Eq. (2.38) which in turn are determined 

by the four prescribed parameters LeF, LeO, φ and ∆T. The values of the coefficients r1α  

and r2α  have been tested over a rather large range of parameters ( 41 << FLe , 

42.1 << OLe , 203.0 << φ  and 4.01 <∆<− T ) for which r2α  is always found to be 

negative and r1α  always has the same sign as s, and hence 's . Therefore, when Da < 

DaCr the coefficients r1α  and r2α  lie in the third quadrant of the r1α - r2α  diagram of Fig. 

2.5, indicating an unstable flame. On the other hand, when Da > DaCr, r1α  and r2α  lie in 

the fourth quadrant of the r1α - r2α  diagram, and thus the flame is stable to small 

amplitude perturbations and unstable to perturbations of sufficiently large amplitude. 

Over this wide range of parameters, which describes most practical combustion systems, 

no limit cycle behavior is predicted, consistent with the experimental observations 

reported in [11-14]. However, we expect that limit cycles may exist when other effects 

such as heat loss are considered, as is the case in the numerical investigation of Sohn et al. 

[5]. Figures 2.6 ~ 2.8 show how the coefficients r1α  and r2α  vary with changes in each 

of the four parameters, LeF, LeO, φ and ∆T. The Damköhler number Da is chosen to be 

smaller than DaCr so that all the traces lie in the third quadrant of the r1α - r2α  diagram. 

Because the value of r1α  is proportional to 's , the traces for Da > DaCr with the same 

parameters are symmetric across the r2α  axis and hence lie in the fourth quadrant of the 

r1α - r2α  diagram. Figures 2.6 and 2.7 show the variations of r1α  and r2α  with LeO and 

LeF for several values of φ with fixed ∆T = 0. Figure 2.8 shows the variations of r1α  and 
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r2α  with φ for several values of T∆  and 2== OF LeLe . The traces in Figs. 2.6 and 2.7 

with the same values of φ start from the same points ( 1=FLe , 2.1=OLe , 0=∆T  and 

φ =1, 2, 3, 4, respectively) and we see that the fuel Lewis number LeF and oxidizer Lewis 

number LeO have a very similar effect on r1α  and r2α .  

In Figs. 2.9 ~ 2.11 we show the evolution of the flame temperature perturbation 

fu , given by  

( )tcRu f 022 )(cos)( += τθτ  

The values of parameters used in Fig. 2.9 are LeF = 1, LeO = 2, φ = 3, ∆T = 0 and Da < 

DaCr so that the solution lies in the third quadrant of the r1α - r2α  diagram shown in Fig. 

2.5. Figure 2.9 shows clearly the nonlinear oscillatory behavior leading to increased 

amplitude of perturbation, and eventually extinction at the time τext given by Eq. (2.42). 

A similar response was predicted by Christiansen et al. [6] in their numerical simulation 

using detailed chemistry and transport. They found that once the maximum flame 

temperature drops below the critical value corresponding to the state of quasi-steady 

extinction during oscillation, the oscillation cannot recover and extinction occurs. The 

above expression for τext provides an approximation for the computed extinction time.  

Figures 2.10 and 2.11 were constructed using the same parameter values as Fig. 

2.9, but with 0'>s  (Da > DaCr) so that the values of r1α  and r2α  lie in the fourth 

quadrant of the r1α - r2α  diagram. In Fig. 2.10 we have chosen rrR 21
2 /)0( αα< , and the 

perturbation amplitude decays rapidly to zero. Figure 2.11 shows the nonlinear oscillation 

of the flame with the initial perturbation rrR 21
2 /)0( αα> , and the amplitude of the 

perturbation is seen to grow with each oscillation, eventually blowing up in finite time. 
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Our prediction of a subcritical bifurcation to a nonlinear pulsating instability is consistent 

with the numerical results of Sohn et al. [5], and also with an early analysis by Joulin & 

Sivashinsky [15] on the nonlinear dynamics of premixed flames with Lewis numbers 

greater than unity.  Sohn et al. [5] simulated a diffusion flame with the single set of 

parameters, LeF = LeO = 2, φ = 1 and ∆T = 0. They found that, when Da > DaCr, the 

perturbation decays to zero and the flame is stable provided the initial amplitude is 

sufficiently small. However, for Da < DaCr the flame was predicted to evolve with 

unbounded oscillations, leading eventually to extinction. No limit cycle behavior was 

predicted for the chosen set of parameters in the absence of volumetric heat loss. Indeed, 

this set of parameters yields coefficients that lie in the third quadrant of the r1α - r2α  

diagram (when Da < DaCr). In another study, Christiansen et al. [6] simulated a spherical 

methane-air diffusion flame with detailed chemistry and transport. The parameters used 

in their work were FLe =2.3, OLe =1.9, φ =13.73 and T∆ =0, which also lie in the third 

quadrant of the r1α - r2α  plane, and they similarly found growing oscillations leading to 

extinction.  

 

2.6. Conclusions 

An evolution equation of the perturbation amplitude was derived in order to study the 

nonlinear dynamics of 1-D planar diffusion flames arising from pulsating instability. The 

Damköhler number Da of interest was chosen to be very close to the critical Damköhler 

number DaCr corresponding to the marginally stable state and the Lewis numbers were 

assumed greater than unity in order to focus on pulsating instabilities. Consequently, the 

transient flame oscillation behaviors exhibit weakly nonlinear characteristics. Our results 
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show that, when Da < DaCr, the flame extinguishes as the oscillation amplitude grows to 

large values. When Da > DaCr, the flame is stable unless a sufficiently large external 

perturbation is imposed, in which case a subcritical bifurcation to a pulsating flame, and 

ultimately extinction, takes place. Our predictions are consistent with available 

experimental and numerical results. Finally, our analysis also identifies a parameter space 

in which limit cycle behavior is possible. However, this regime falls outside the wide 

range of parameters typical of most practical combustion systems that are explored here.  

It is anticipated that additional effects not considered here, such as heat loss, may enable 

limit cycle behavior to be observed in practice.   
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Appendix 

Following the same procedure as that in Cheatham & Matalon [7], the following 

homogeneous linear system can be derived from the jump and leakage conditions of 

leading order perturbations. 
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(2.A1) 

where 

OFTJLef fJJJJ ,,   ),coth(
2
1 1 =+−= − ξλλ  

The values of ( )fJ ξ±Φ  can be calculated from the linear system (2.A1) and in turn the 

values of the constants ±
JC  can be obtained from them. Notice that the constants ±

JC  are 

proportional to each other. Without loss of generality, we can assume any of them, say 

+
TC , unity.  

Similarly, the jump and leakage conditions of the adjoint problem (2.35) produce 

the linear system 



www.manaraa.com

 62

( )
( )
( )
( )
( )
( ) 


























=



























Ψ
Ψ
Ψ
Ψ
Ψ
Ψ































+
−






 −

+






 +−

+
−







 −






 −−

−−
−

−
−

−

+

−

+

−

+

−

−−

0
0
0
0
0
0

0
1
2

2
1

1
2

0
2
1

1
1

2
1

2
111

2
1

0010
110000

001100
000011

2
1

2

11
22

fO

fO

fF

fF

fT

fT

O
O

FF
F

TT

OO
O

O
O

FF
OO

FF
F

OO

FF
TT

OF

f
Le

Le
Le

f

Le
Le

f
Le

Le
bLe
bLe

f
bLe
bLe

f

LeLe

ξ
ξ
ξ
ξ
ξ
ξ

γ
λ

γ
λ

γ
γ

λ
χχ

λ
χχ

λ

 

(2.A2) 
and the constants ±

JE  can be calculated in the same way. 

At )(εO , the jump & leakage conditions produce the following inhomogeneous 

linear systems 
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and 
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(2.A4) 

where  

OFTJLeg fJJJJ ,,   ),coth(
2
1 1 =+−= − ξµµ  
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2
16

2
15 )(     ,)( Φ=Φ= FbqFbq OF  

)(
2
1     ),(

2
1 2

16
2

15 Φ=Φ= FbpFbp OF  

Thus, the constants ±
JB  and ±

JD  can be determined from the values of ( )fJ ξ±Ω  and 

( )fJ ξ±Θ  computed from (2.A3) and (2.A4), respectively. 
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Figure 2.1. The one-dimensional flame configuration. 
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Figure 2.2. Leakage functions S1 and S2 as functions of γ  and ∆; for γ > 0 they 

correspond to SF and SO and for γ < 0 to SO and SF, respectively. 

0

2

4

6

8

10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
D - Dc

S
2

g = 0

g = 0.2

1.E-10

1.E-05

1.E+00

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

g = 0.4

g = 0.6

g = 0.8

0

2

4

6

8

10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
D − Dc

S
1

g = 0

g = 0.2

g = 0.4

g = 0.6g = 0.8



www.manaraa.com

 67

 

 

Tf
Reaction-sheet limit

DaCr

Daext

Dac

Da  

 

Figure 2.3. Schematic of a typical response curve of flame temperature Tf to the 

Damköhler number Da  with the points Daext and DaCr corresponding to the extinction 

and onset of instability, respectively. 
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Figure 2.4. Schematic of a typical response curve of reactant leakage to the reduced 

Damköhler number ∆ with the points ∆ext and ∆Cr corresponding to the extinction and 

onset of instability, respectively. 
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Figure 2.5. The long time behavior of )( 2τR  mapped out in the r1α - r2α  parameter plane. 
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Figure 2.6. Variation of r1α  and r2α  with FLe  for several values of φ  (with OLe =1.2, 

0=∆T  and Da < DaCr). 
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Figure 2.7. Variation of r1α  and r2α  with OLe  for several values of φ  (with FLe =1, 

0=∆T  and Da < DaCr). 
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Figure 2.8. Variation of r1α  and r2α  with φ  for several values of T∆  (with 

2== OF LeLe  and *DaDa < ). 
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Figure 2.9. Flame temperature perturbation fu  as a function of slow time 2τ  for Da < 

DaCr, with FLe =1, OLe =2, φ =3 and T∆ =0. 
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Figure 2.10. Flame temperature perturbation fu  as a function of slow time 2τ  for Da > 

DaCr. The initial perturbation )0(2R  is chosen to be smaller than rr 21 /αα . ( FLe =1, 

OLe =2, φ =3, T∆ =0). 
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Figure 2.11. Flame temperature perturbation fu  as a function of slow time 2τ  for Da > 

DaCr. The initial perturbation )0(2R  is chosen to be larger than rr 21 /αα . ( FLe =1, 

OLe =2, φ =3, T∆ =0). 
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Chapter 3: Forced Oscillation in Diffusion Flames near 

Thermal-Diffusive Resonance 

 

In this chapter, we study the forced flame oscillations in planar diffusion flames by 

incorporating the external forcing into the analysis of Chapter 2. Of particular interest is 

the resonance phenomenon between the forced and intrinsic flame oscillations driven by 

the thermal-diffusive instability. A linear response is first examined to identify the critical 

condition for the resonance to occur. The nonlinear near-resonant response is then studied 

with the Damköhler number Da chosen to be very close to the critical value by deriving 

an evolution equation for the amplitude of forced oscillation.  

 

3.1. Formulation 

We adopt the same flame configuration and asymptotic model as those in Chapter 2. The 

external forcing is introduced by independently imposing a flow field with small 

amplitude oscillations. Thus, the appropriate nondimensional governing equations in the 

convective-diffusive zone can be written as  
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The velocity U is expressed as 

..)exp()(
)(1 1

ccicthtH
tHU

+=
+= − εβ     (3.4) 

where ε is a small parameter satisfying 11 <<<<− εβ , h the amplitude of velocity 

fluctuation, c the forced frequency and c.c. denotes the complex conjugate. Equations 

(3.1)-(3.4) are subjected to the boundary conditions, jump relations and leakage 

conditions given by Eqs. (2.4)-(2.9) of Chapter 2. 

 

3.2. Linear Response 

A linear analysis is first conducted by assuming h = 1 such that the velocity fluctuation is 

of O( εβ 1− ) relative to its mean value, as shown in Eq. (3.4). The solution under the 

harmonic fluctuating velocity field (3.4) can be written in the form of steady-state base 

solutions for temperature, mass fractions of fuel and oxidant, and the flame-sheet location 

under unity flow field plus a correction term accounting for the small velocity 

fluctuation: 

),()( 1 txuxTT b εβ −+=     (3.5) 

),()( 1
, txvxYY bFF εβ −+=     (3.6) 

),()( 1
, txwxYY bOO εβ −+=     (3.7) 

),(1
, txlxx bff εβ −+=     (3.8) 

where u, v, w, and l are the correction terms for temperature, mass fractions of fuel and 

oxidant, and flame sheet location, respectively, and the base solutions Tb, YF,b, YO,b, and 

xf,b are respectively given by Eqs (2.12)-(2.13) in Chapter 2. We note that the unsteady 
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fluctuations induced by the perturbed flow field (3.4) are of O(β -1ε). The magnitude of 

these terms is sufficient to elicit an O(1) response due to the extreme sensitivity of the 

Arrhenius reaction rate term. Substituting Eqs. (3.5)-(3.8) into the governing equations 

(3.1)-(3.3) for T, YF and YO and their boundary conditions, jump and leakage conditions 

(2.4)-(2.9) yields the governing equations for u, v and w: 

( ) ..)exp(0 ccictTuuu xxxxt +−=−+ ε     (3.9) 

( ) ..)exp(0,
1 ccictYvLevv

xFxxFxt +−=−+ − ε    (3.10) 

( ) ..)exp(0,
1 ccictYwLeww

xOxxOxt +−=−+ − ε    (3.11) 

subject to the same boundary, jump and leakage conditions as those given by Eqs. (2.23)-

(2.27) in Chapter 2, where T0, YF,0 and YO,0 are the leading-order base solutions in terms 

of β–1, and the subscript “x” denotes differentiation with respect to x. Here and hereafter, 

all the unspecified parameters are the same as those defined in Chapter 2. Equations 

(3.9)-(3.11) imply that the flame oscillates under the external harmonic driving force due 

to the velocity fluctuation. 

The solutions to u, v and w assume the form 

wvutxccictxtx cp ,,     ),exp()(..)exp()(),( =++= φσφφφ  

where the particular solution φp(x)exp(ict)+c.c. accounts for the response to the velocity 

fluctuation and the common solution φc(x)exp(σt) is associated with the intrinsic 

instability. σ is a complex number whose real part identifies the growth rate. The 

Damköhler number Da of interest here is larger than its critical value DaCr corresponding 

to the marginal state of intrinsic instability. Thus, the flame is intrinsically stable so that 

the common solution φc(x)exp(σt) will damp out eventually, and hereafter, only the 
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particular solution φp(x)exp(ict)+c.c. is considered. It should be noted that up(x), vp(x) and 

wp(x) are complex functions whose modulus denote the oscillation amplitude while the 

phase angle denotes the phase shift of the oscillation from the imposed velocity 

fluctuation. The solutions to up(x), vp(x) and wp(x) are 
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where  

OFTJciLeLe JJJ ,,       ,4
2
1 2 =+=Λ  

with LeT = 1. The constants B1, B2, C1, C2, D1 and D2 are obtained by applying the jump 

and leakage conditions (2.24)-(2.27), which yield the inhomogeneous linear system 
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(3.12) 
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and +
pu , −

pu , +
pv , −

pv , +
pw  and −

pw  are the values of up, vp and wp at the oxidant and fuel 

sides of the flame sheet, respectively. The coefficient matrix in Eq. (3.12) depends on the 

four prescribed parameters LeF, LeO, φ and ∆T defining the combustion system, the 

imposed frequency c, and the Damköhler number Da. The amplitude and phase shift of 

forced oscillations for T, YF and YO at both sides of the flame sheet can be obtained from 

+
pu , −

pu , +
pv , −

pv , +
pw  and −

pw  by solving Eq. (3.12). However, under certain Damköhler 

numbers and forced frequencies, the determinant of the coefficient matrix in Eq. (3.12) 

could be zero, leading to infinitely large values of +
pu , −

pu , +
pv , −

pv , +
pw  and −

pw , i.e. 
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infinitely large amplitude of flame oscillations even under an )(εO  weak forcing. This 

implies that resonance occurs under such an external forcing. The linear stability analysis 

performed by Kukuck & Matalon [1] for the intrinsic oscillation of the same flame yields 

a homogeneous linear system with the same coefficient matrix. The solvability condition, 

vanishing of the determinant of the coefficient matrix, produced the critical frequency 

and Damköhler number, c0 and DaCr, corresponding to the marginally stable state. Thus, 

the imposed frequency and Damköhler number at resonance are identical to those at the 

onset of intrinsic oscillation, and hence the resonance occurs between the external forcing 

and intrinsic oscillation of the flame. Consequently, two conditions are required for the 

resonance of diffusion flames to occur: the flame is close to the stability boundary, i.e., 

Da → DaCr, and the imposed frequency c approaches the critical frequency c0. 

The inhomogeneous system (3.12) gives the dependence of the amplitude and 

phase shifts of forced oscillation on the imposed frequency c and the Damköhler number 

Da. Figure 3.1 shows the amplitude of +
pu  versus the imposed frequency c for different 

values of Da. It is seen that when the flame is at the instability boundary, i.e. Da = DaCr, 

the imposed velocity fluctuation induces infinitely large flame oscillations, i.e. resonance, 

as c approaches c0. For Da sufficiently larger than DaCr, the oscillation amplitude 

decreases monotonically with increasing c, while for Da close enough to DaCr, the 

oscillation amplitude peaks at the frequency close to but smaller than the natural 

frequency c0. This differs from previous investigations that predicted only the monotonic 

attenuation of forced oscillation with the increase of the imposed frequency. Now we 

know that this monotonic dependence holds only when the flame is sufficiently away 

from the unstable state so that the resonance between the external forcing and intrinsic 
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oscillation of flame does not occur. Figure 3.2 shows variations of the phase shifts of +
pu , 

−
pu , +

pv , −
pv  +

pw  and −
pw  with the Damköhler number Da for c = c0. It is seen that the 

oscillation of reactant leakages +
pv  and −

pw  are always in phase. As Da approaches DaCr, 

i.e. the flame approaches the resonance condition, temperature oscillations on both sides 

of the flame sheet, +
pu  and −

pu , become in phase and oscillations of the mass fractions of 

fuel and oxidant on both sides of the flame sheet, +
pv , −

pv  +
pw  and −

pw , become in phase 

as well. The phase difference between oscillations of temperature, +
pu  and −

pu , and mass 

fractions, +
pv , −

pv  +
pw  and −

pw , is π when the flame is at resonance, indicating they are out 

of phase. This is because higher flame temperatures lead to less reactant leakages, and 

vice versa. 

 

3.3. Nonlinear Response 

The preceding analysis predicts infinite oscillation amplitude at the resonant frequency. 

However, the amplitude is expected to be limited by the inherent nonlinearities in the 

problem. Here we derive an evolution equation for the amplitude of forced oscillation 

near resonance. We adopt the scalings: 

2ε=h  

2
CrCr /)( ε=− DaDaDa  

2
00 /)( ωε=− ccc         (3.13) 

so that the flame oscillation exhibits a weakly nonlinear characteristic and a long time 

transient behavior. Thus we introduce the “slow time” variables 
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tt 2
21 , ετετ ==  

associated with the long time transient behavior. The velocity fluctuation H(t) can be 

rewritten as  

..)exp()( 0
3 ccictH += τε  

where 2ωττ += t . 

We expand the variables up, vp and wp in a power series in ε,  

∑
∞

=

=
0

),,(),,(
m

m
mmmppp wvuwvu ε  

and expand the governing equations, boundary, jump and leakage conditions for u, v and 

w (2.24)-(2.27) in terms of ε. Following the same process as that in Chapter 2, we can 

solve, to O(1), 


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

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fJ
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wvu
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021

021
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Then from the solvability condition of higher order solutions, we have, to O(ε), 

0/ 1 =∂∂ τA  

such that A = A(τ2). Finally, at O(ε2), we obtain the nonlinear evolution equation for the 

amplitude of oscillation  

0)(' 3
2

201 =++++ ααωα AAAicsA     (3.14) 

where  

0

30
3 α

αα =  
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and all the other coefficients have been defined in Chapter 2. Note that the amplitude 

function A is complex and hence includes the information of both amplitude and phase. 

We construct solutions by first writing the amplitude function A in the polar form and 

separating α1, α2, and α3 into their real and imaginary parts: 

)](exp[)( 22 τθτ iRA =  

iririr iii 333222111 ,, ααααααααα +=+=+=  

where R is the amplitude and θ the polar angle indicating phase shift. The complex 

evolution equation (3.14) can now be expressed as two real equations, for the amplitude 

and the phase shift: 

0sincos' 33
3

21 =++++ θαθααα irrr RRsR     (3.15) 

0sincos)(' 33
3

201 =−++++ θαθααωαθ riii RRcsR   (3.16) 

We note that the evolution equations (3.14) or (3.15) and (3.16) have a very similar form 

as those describing nonlinear oscillators, e.g. the Van der Pol oscillator, under weak 

damping and forcing [2]. A simple comparison of these systems shows that the term sα1 

in Eqs. (3.14) and (3.15), which quantifies the deviation of Da from DaCr, plays the role 

of damping for the forced flame oscillation. 

Here, we study the steady-state solutions of Eqs. (3.15) and (3.16) in order to 

access the final amplitude and phase of the forced flame oscillation under external 

forcing. Combining the steady-state forms of equations (3.15) and (3.16) yields the 

following cubic equation for R2 
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Equation (3.17) will possess three real and positive solutions whenever the following 

inequality is satisfied 

3
2

2 ≥
r

i

α
α

     (3.18) 

It has a single real solution otherwise. We now consider the dependence of α2 on the four 

prescribed parameters, LeF, LeO, φ and ∆T. In Fig. 3.3, we plot its variations with each 

prescribed parameter to determine conditions (if any) for which the inequality in Eq. 

(3.18) is satisfied, which would indicate multiplicity of solutions. The transition boundary, 

3/ 22 =ri αα , is also plotted in each figure. As seen in Fig. 3.3, we have found that for 

a wide range of realistic parameter values, all curves lie to the left of the transition 

boundary, indicating that solutions to Eq. (3.17) are single-valued. 

We now investigate the sensitivity of flames to the imposed velocity oscillations 

under different prescribed parameters through this single-valued solution. Figure 3.4 

shows variation of the amplitude of forced oscillation, R, with the normalized frequency 

ω, defined in Eq. (3.13), for Da = DaCr, LeF = 2, LeO = 2, φ = 1 and ∆T = 0. It is seen that 

the dependence of R on the imposed frequency shows similar behavior as those in Fig. 

2.2 for Da slightly larger than DaCr, in that it peaks at the frequency close to but slightly 

smaller than the intrinsic flame oscillation frequency c0. The finite amplitude of forced 

oscillation at the resonance condition, i.e. Da = DaCr and c = c0, is due to the nonlinear 

effects considered through the nonlinear analysis. We hence can plot the dependence of 

this peak amplitude, Rmax, on the system parameters such as LeF, LeO, φ and ∆T to 
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examine at what conditions the flame is able to achieve the largest Rmax and hence is most 

responsive to the external forcing. Since the maximum amplitude of forced oscillation is 

achieved under the smallest damping, Rmax can be solved from Eq. (3.17), by setting the 

damping effect s = 0, as ( ) 3/1
23max / rR αα= , which can be derived to occur at the 

normalized frequency ( ) 3/2
232 / ri αααω −= . Thus, due to the nonlinearity, the flame 

oscillates with the maximum amplitude at the imposed frequency not necessarily equal to 

the natural frequency, c0. It is noted that whether the maximum amplitude, Rmax, occurs at 

the frequency smaller or larger than c0 depends on the sign of a2i, which in turns depends 

on the prescribed parameters. The peaking of the curves at c < c0 shown in Figs. 3.1 and 

3.4 is due to the parameters we have used, LeF = 2, LeO = 2, φ = 1 and ∆T = 0 that yield a 

positive α2i. Figure 3.5 shows variations of Rmax with LeF for different values of φ. It is 

seen that except for φ = 1, Rmax increases monotonically with LeF. In fact, Rmax peaks at a 

much larger LeF, e.g. LeF = 14.4 for φ = 3, which is out of the range of this plot. Since for 

most hydrocarbon–air diffusion flames φ > 1 and fuels with such large Lewis number are 

rare, it can be considered that Rmax increases with LeF monotonically. Thus, in general the 

flame is more sensitive to the external forcing for larger LeF.  

Figure 3.6 shows variations of Rmax with LeO for different values of φ. It is seen 

that for φ > 1 most of the Rmax ~ LeO curves peak within the range of 1 < LeO < 2, which 

is a more practical range for the oxidant. Thus, flames with LeO falling in this range are 

most responsive to the external forcing. Furthermore, it is seen from Figs. 3.5 and 3.6 that 

except for smaller LeO where Rmax is not sensitive to φ, Rmax decreases with increasing φ 

over most of the parameter range for LeF and LeO. Figure 3.7 shows variations of Rmax 
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with φ for different values of ∆T. It is seen that Rmax decreases monotonically with 

increasing φ over most of its range except for larger ∆T and smaller φ, under which Rmax 

increases with increasing φ over a very narrow range of φ. Thus, flames with smaller φ, in 

general, are more responsive to the external forcing.  

 

3.4. Conclusions 

The response of flame oscillations to external velocity fluctuations of small amplitude is 

examined. An analysis on the linear response is first conducted and the results show that 

when the flame is near the boundary of thermal-diffusive pulsating instability, the 

velocity fluctuation may induce resonance as the fluctuation frequency approaches the 

natural frequency of the intrinsic oscillation. Thus, the amplitude-frequency response 

curve exhibits a peak around the natural frequency. Monotonic dependence of the 

oscillation amplitude on the forced frequency holds only when the flame is sufficiently 

away from resonance. A nonlinear near-resonant response is then conducted to study the 

effects of inherent nonlinearities on the response of flame oscillation by deriving an 

evolution equation for the amplitude of forced oscillation. Examination of the derived 

evolution equation reveals that, in most situations, flames with larger LeF, smaller φ and 

∆T, and 1 < LeO < 2 have the largest oscillation amplitude at resonance. Thus, these 

flames are most responsive to the external forcing.  
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Figure 3.1. Amplitude of +
pu  versus forced frequency c for different values of Da (with 

LeF = 2, LeO = 2, φ = 1 and ∆T = 0). 
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Figure 3.2. Phase shifts of +
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pw  versus Da with c = c0. 
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Figure 3.4. Variation of oscillation amplitude R with the normalized imposed frequency 

for Da = DaCr (with LeF = 2, LeO = 2, φ = 1 and ∆T = 0). 
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Figure 3.5. Variations of the maximum oscillation amplitude Rmax with LeF for different φ 

(with LeO = 2 and ∆T = 0) 
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Figure 3.6. Variations of the maximum oscillation amplitude Rmax with LeO for different φ 

(with LeF = 2 and ∆T = 0). 
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Figure 3.7. Variations of the maximum oscillation amplitude Rmax with φ for different ∆T 

(with LeF = 2 and LeO = 2). 
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Chapter 4: Extinction of Radiative Diffusion Flames with Non-

Unity Lewis numbers 

 

4.1. Background 

In this chapter, we carry out a systematic analysis for the structure and dual extinction 

limits of counterflow diffusion flames with flame radiation and non-unity Lewis numbers 

of the fuel and oxidant. This problem has been previously studied in a few analyses. 

Specifically, Sohrab et al. [1] proposed a multiscale asymptotic theory for the analysis of 

radiative flames by recognizing that while radiation is a temperature-sensitive process, it 

is nevertheless less sensitive than that of chemical reaction.  Consequently, radiative loss 

is operative within a thin, O(δ), zone that sandwiches the O(ε) reaction zone, but is in 

turn embedded within the much thicker O(1) outer diffusive-convective zone, where ε is 

the reciprocal of the Zeldovich number, and δ satisfies ε << δ << 1. Chao et al. [2] first 

successfully demonstrated, via the multi-scale asymptotic theory of Sohrab et al. [1], the 

existence of dual extinction states for droplet combustion with flame radiation. The 

analysis further showed that extinction for both limits, namely the kinetic and radiative 

extinction limits, is governed by Liñán’s extinction criterion [3] as the consequence of 

excessive reactant leakage. Subsequently, this multi-scale asymptotics was employed by 

Oh et al. [4] for the diffusion flame stabilized on a condensed fuel with both flame and 

surface radiation, and by Liu et al. [5] for the counterflow diffusion flame with flame 

radiation and near unity reactant Lewis numbers. Specifically, Liu et al. [5] showed that 
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larger Lewis numbers lead to smaller flammable range of Damköhler number and smaller 

Lewis numbers increase this flammable range. Experimentally, the existence of the dual 

extinction limits was observed by Maruta et al. [6] in the counterflow diffusion flame of 

methane and air with flame radiation under microgravity. 

These analyses, however, missed considering the excess/deficiency of the total 

enthalpy, i.e. excess enthalpy, in the reaction zone. Its importance was recognized by 

Kim & Williams [7] in their study of counterflow diffusion flame with non-unity Lewis 

number, Le. The excess enthalpy arises from the non-conservative nature of the total 

enthalpy, due to the imbalance of thermal and mass diffusion as the reactants leak 

through the flame as a result of finite-rate chemistry. It was shown that, although the 

amount of the excess enthalpy is small, typically of O(ε), it can lead to O(1) changes in 

the reaction rate. Furthermore, without considering the excess enthalpy, the dependence 

of Da on the reduced Damköhler number, D, is linear [3] so that the minimum of Da 

directly corresponds to the minimum of D, Dc. The physical extinction limit can be 

consequently determined from the reaction-sheet solution using Liñán’s formula [3]. 

However, with the consideration of excess enthalpy, this dependence becomes nonlinear 

such that Dc does not necessarily correspond to the minimum of Da, and as such does not 

correctly identify the extinction condition. Recognizing that in addition to 

nonequidiffusion, which is the cause of excess enthalpy in the analysis of Kim & 

Williams [7], radiative loss from flames is the other major source of enthalpy loss in 

flames, overlooking the excess enthalpy is expected to produce O(1) error on the 

radiative extinction limit, at which radiative loss is significant. Furthermore, previous 

analyses [1, 2, 4, 5] did not consider adequately the effect of nonequidiffusion. Since 
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extinction can be considered to be primarily attributed to the excessive heat loss from the 

reaction zone, which could be achieved through both conduction and radiation, it is 

necessary to consider the effects of non-unity Le and radiative loss at the same time. 

Although Liu et al. [5] considered non-unity Le with O(ε) deviation from unity, such 

small deviation cannot describe all the Le dependency of the dual extinction limits, as 

will be shown later. 

In view of the above considerations, one of the primary objectives of this chapter 

is to perform a rigorous multi-scale asymptotic analysis and develop a model for distinct 

and general Lewis numbers of fuel and oxidant, LeF and LeO, and with the proper 

consideration of excess enthalpy. This formulation is then applied to study the dual 

extinction limits of the radiative counterflow diffusion flames with non-unity Lewis 

numbers. It should be mentioned that Mills & Matalon [8] studied the extinction of 

burner-generated radiative spherical diffusion flames with non-unity LeF and LeO. 

However, the radiative loss was assumed to be an O(ε) quantity and occurs within a zone 

of O(1) thickness between the burner surface and flame, whose location and thickness are 

arbitrary given. Thus this analysis is based on different assumptions from the current 

study, in which radiative loss occurs within the radiation zone of O(δ) thickness 

determined from the temperature sensitivity of radiation, and hence has different scope of 

application. Furthermore, Mills & Matalon [8] found that the Lewis numbers of fuel and 

oxidant have significant effect on extinction limits, and steady burning is not possible 

when they are sufficiently large. This substantiates the need to conduct a rigorous 

extinction analysis for Lewis numbers sufficiently different from unity. 
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We further note that since the formulation developed in the current study is of a 

general nature, it can be applied to other phenomena affected by simultaneous radiative 

loss and mixture nonequidiffusion, such as the thermal-diffusive instability of radiation-

affected diffusion flames. This possible extension will be subsequently discussed.  

 

4.2. Formulation 

4.2.1. Governing Equations 

Figure 4.1 shows the counterflow configuration considered in this study, with the fuel 

and oxidant streams approaching from the left- (-∞) and right-hand (∞) sides 

respectively. Assuming constant physical and chemical properties of the reactants, 

constant density, one-step irreversible chemical reaction, and optically thin 

approximation for the radiative loss, the appropriate nondimensional governing equations 

can be written as 
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with the boundary conditions 
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−∞∞−

xYYYTT
xYYYTT
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   as             ,0     ,
   as    0    ,    ,

,

,    (4.4) 

where ( )TTYYDa aOFC −= expω  is the chemical reaction rate, )/(4 443 kcTqq pR ρσκ=  the 

rate of radiative heat loss, )/(~
, kWYBDa FOFKC νρ −∞=  the collision Damköhler number, 
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and Ta, k, σ, κ, q, ρ, cp, BK, respectively denote the activation temperature, stretch rate of 

the flow, Stefan-Boltzmann constant (1.36µ10–11 kcal/m2-sec-K4), Planck’s mean 

absorption coefficient, heat of combustion per unit mass of fuel supplied, density, 

specific heat, and pre-exponential factor for the reaction rate. The nondimensional T and 

Yi are defined as 

)/(

~

pcq
TT = , FF YY ~= , ν/~

OO YY =  

where FFOO WW ννν =  is the stoichiometric mass ratio of the oxidant to the fuel and the 

over-tilde “~” designates the unscaled T and Yi for differentiation with their 

nondimensional counterparts. 

With the assumption of large activation energy, chemical reaction is confined 

within a thin zone of )(εO  thickness, where af TT /2=ε  and Tf is the flame temperature. 

Due to the temperature sensitive nature of radiation, radiative loss is assumed to be 

confined within a radiation zone of O(δ) thickness, with the reaction zone embedded 

within it, as shown by the flame structure in Fig. 4.1. Further recognizing that the 

diffusive-convective zone external to the radiation zone is of O(1) thickness, we seek 

solution for the flame structure satisfying the relation 1<<< δε . Following Sohrab et al. 

[1], the rate of radiative loss, qR, is approximated by an Arrhenius-type function 










 −
=

f

f
RfR T

TT
qq

δ
exp      (4.5) 

where )/(4 443 kcTqq pfRf ρσκ=  and )(ln/)(ln RqdTd=δ . With the assumptions of 

constant density and properties made in this study, δ =0.25. 
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4.2.2. Asymptotic Expansions 

Following Chao et al. [2], the temperature T in the diffusive-convective, radiation, and 

reaction zones are respectively expanded in terms of ε and d as 

[ ] ( )2
3210out ),(),(),(),(~ δεδε OtxTtxTtxTtxTT ++++ ±±±±±   (4.6) 

[ ] )()()()(~ 2
321R δζεζδζε OTT f +Θ+Θ+Θ+ ±±±±    (4.7) 

)O()()(~ 3
2

2
1in εητεηετ +++fTT      (4.8) 

where δζ )( fxx −=  and εη )( fxx −=  are the stretched spatial coordinates in the 

radiation zone and reaction zone, respectively, and xf is the flame-sheet location. The 

superscripts “+” and “–” denote solutions in the oxidant and fuel sides of the flame, 

respectively. The reason for expanding Tin only in terms of ε is that the reaction zone is 

very thin so that radiative loss from it can be assumed to be negligible.  

Because YF and YO are not directly affected by radiative loss, their analyses only 

need to be conducted in two zones, namely the reaction zone and the diffusive-convective 

zone. Thus, they can be respectively expanded as 

)O(),(),(),(~ 3
2,

2
1,0,out, εεε +++ ±±±± txYtxYtxYY iiii     (4.9) 

)O()()(~ 3
2,

2
1,in, εηεηε ++ iii yyY     (4.10) 

where i=F, O. We note that unlike the analysis of Chao et al. [2], the outer expansions for 

YF and YO do not have the O(d) terms. This is because these terms do not have the 

corresponding matching terms in the reaction zone and because of their homogeneous 

boundary conditions at ±∞→x . Consequently, it can be shown that they are identically 

zero throughout the diffusive-convective zone.  
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The above expansions for T are subject to the matching conditions between the 

radiation and reaction zones: 
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and the matching conditions between the diffusive-convective and radiation zones: 
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The expansions for YF and YO are only subject to the matching conditions between the 

diffusive-convective and reaction zones: 
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 (4.13) 

 

4.2.3. Jump Relations and Reactant Leakages across the Reaction Zone 

We aim to derive the jump relations and the reactant leakages that serve as the inner 

boundary conditions for the outer solutions in the diffusive-convective zone.  
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The matching conditions for the O(1) outer solutions in Eqs. (4.12) and (4.13) 

yield the jump relations 

[ ] [ ] [ ] 0)0()0( 0,0,0,0,0 ===== −+
OFOF YYYYT    (4.14) 

where we have adopted the notation [ ] )()( 000 ff xTxTT −+ −= . Additional jump relations 

and reactant leakages are to be derived through the asymptotic analysis of the reaction 

zone. Substituting the inner expansions (4.8) and (4.10) and the stretched coordinate η 

into the governing equations (4.1)-(4.3) yields, to O(ε), 

1
1,1,

2
1

2 τητ eyDaydd OF−=      (4.15) 

0)( 2
1,1

2 =+ ητ dLeyd ii , i=F, O    (4.16) 

and to O(ε2), 

0)( 2
2,2

2 =+ ητ dLeyd ii , i=F, O    (4.17) 

where )/exp(3
faC TTDaDa −= ε  is the reaction Damköhler number. Integrating Eq. 

(4.16) twice and applying the relevant matching conditions, (4.11) and (4.13), for τ1, 1,iy , 

ητ dd 1  and ηddyi 1,  yield 
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and the jump relations 
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Integrating Eq. (4.17) once and applying the relevant matching conditions, (4.11) and 

(4.13), for ητ dd 2  and ηddyi 2,  yield the jump relation 
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(4.22) 

So far we have derived the jump relations (4.14) and (4.20)-(4.22) across the 

reaction zone. However, for the current multi-scale analysis, the reaction zone is 

sandwiched in the radiation zone so that the temperature terms in these jump relations are 

expressed by the expansion terms in the radiation zone. Since we aim to derive the jump 

relations that are to be used as the inner boundary conditions of the outer expansions, the 

terms, )0(1
±Θ , ζdd /)0(2

±Θ , and ζdd /)0(3
±Θ  in Eqs. (4.20)-(4.22) need to be replaced by 

the outer expansion terms. This can be realized through integrating the structure equation 

of the radiation zone and applying the matching conditions between the radiation zone 

and the diffusive-convective zone. Substituting Eq. (4.7) into the chemically frozen form 

of Eq. (4.1) yields 

)exp( 2
2

2
2

fTRadd ±± Θ=Θ ζ      (4.23) 

ff TTRadd /)exp( 21
2

1
2 ±±± ΘΘ=Θ ζ     (4.24) 

fff TTRaddxdd /)exp( 231
2

3
2 ±±±± ΘΘ=Θ+Θ ζζ   (4.25) 

where Ra = dqRf. Integrating Eqs. (4.23)-(4.25) and applying the relevant matching 

conditions (see Appendix) yield 

x
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)()0( 11 fxTA ±±± =Θ       (4.27) 
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where ( )2
0 /)(21 xxTRaTA ff ∂∂+= ±± . Thus, the jump relations in terms of the outer 

solutions can be obtained by substituting Eqs. (4.26)-(4.28) into Eqs. (4.20)-(4.22), 

respectively,  
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where ±±± += AAB 2/]1)[( 2  and we have used the notation 

[ ] )()( 111 ff xTAxTAAT −−++ −= . 

The jump relations (4.14) and (4.29) provide adequate inner boundary conditions 

for the O(1) outer solutions. However, two additional conditions for the )(εO  outer 

solutions are required to close the problem. They can be supplied by the amount of 

leakages of the fuel and oxidant through the reaction zone, and are given as 

),()(         ),,()( 1,1, ∆=∆= −+ γγ OOfOFFfF SLexYSLexY   (4.32) 

by transforming the energy equation (4.15) into the Liñán’s canonical form, where,  
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is the reduced Damköhler number, SF and SO are the leakage functions of the fuel and 

oxidant, respectively, and  

)()(
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fFFfF
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+−++

+=

+=
   (4.35) 

are the excess/deficiency in the fuel and oxidant enthalpies, respectively, evaluated at the 

reaction sheet. This process is standard [3, 9] and is not repeated here.  

The leakage functions SF and SO are obtained from solving the canonical form the 

structure equation and hence can take advantage of previous results [9, 10]. As we have 

discussed in Chapter 2, they are only dependent on D and γ , and their solutions exist 

only when ∆ ¥ ∆c, where the critical value ∆c is given by the expression of Liñán [3], 

shown previously, as 

( ) ( ) ( ) ( )[ ]432 1055.0126.011 γγγγ −+−+−−−=∆ ec   (4.36) 

The term ( ) ( ) 2121 FOf hhh γγ −++=  in Eq. (4.34) represents the 

excess/deficiency of the total enthalpy in the reaction zone. This is the term that was 

overlooked in previous analyses [1, 2, 4, 5]. Without considering it, D depends linearly on 

Da so that its minimum value, DaE, coincides with that of D, Dc. Because g is determined 

from the leading order solutions, the extinction condition, represented by DaE, can be 

accordingly determined directly from Dc. However, when the excess enthalpy is taken 

into consideration, Eq. (4.34) becomes a nonlinear relation between D and Da because hf 

depends on the reactant leakages SF and SO, which, in turn, depend on D. Consequently, 

Dc does not correctly identify the extinction condition, DaE, and the determination of Da 

from given D requires the O(ε) outer solutions, which substantially complicates the 

solution procedure. 
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4.2.4. Summary of the Model 

So far we have derived the jump relations in terms of the outer solutions and the reactant 

leakages across the reaction zone, which provide sufficient inner boundary conditions to 

fully determine the O(1) and O(ε) outer solutions and the flame sheet location. They are 

summarized as follows: 

To O(1): 

[ ] [ ] [ ] 0)0()0( 0,0,0,0,0 ===== −+
OFOF YYYYT    (4.37) 
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To O(ε): 
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),()(1, ∆=+ γFFfF SLexY ,   ),()(1, ∆=− γOOfO SLexY   (4.41) 

It is noted that we have not derived the jump relations for the O(d) expansion 

terms of T. This is because the matching conditions 0~)0(2
±Θ  imply that the O(d) terms 

can be solved separately on either side of the reaction zone. 

 

4.2.5. Solutions of Counterflow Diffusion Flame 

We now apply the model Eqs. (4.37)-(4.41) to the counterflow diffusion flame with non-

unity Lewis numbers and radiative loss. The O(1) outer solutions subject to the boundary 

condition (4.4) and jump relations (4.37) and (4.38) can be solved as 
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where  

( ) ( )[ ]xLerfLLxI 2/12; +=± ∓π  

and the flame location fx  and temperature fT  can be respectively determined from the 

jump relation (4.38) implicitly as 
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Equation (4.46) indicates that the chemical heat release is conducted away from the flame 

to both sides. It is seen that in additional to being used to heat up the reactants, the heat 

release now needs to compensate for the radiative loss through the term 2RaTf in Eq. 

(4.46). However, the temperature gradient decreases at the same time due to the reduction 

of the flame temperature through radiative loss. Moreover, it is noted that the total heat 

release is controlled by the reactant consumption and hence is fixed. In most cases, these 

two opposite effects on heat transfer by radiative loss are not equal. Therefore, the overall 

outcome of radiative loss is to redistribute the proportions of heat transfer from the flame 
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to both sides and as such it plays the similar role as varying the thermal diffusivities of 

the reactants.  

Applying the homogeneous boundary conditions at ±∞→x  and the jump and 

leakage conditions (4.39)-(4.41), the O(ε) outer solutions, ±
1T , ±

1,FY  and ±
1,OY , can be fully 

determined. Here we only show them in the form of the excess enthalpies, hF and hO, 

because they are the reason the O(ε) outer solutions are required. Thus we have 
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and the total excess enthalpy is then given as 
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We note that the total excess enthalpy hf is a linear combination of the reactant 

leakages, SF and SO, while g and the coefficients CF and CO are only dependent on the 

leading order solutions and radiative loss. Thus, for a fixed system with given radiative 

loss, the total enthalpy hf is solely determined by the value of ∆.  

 

4.2.6. Extinction Analysis 

Since the quantifying parameters ε , Ra and Da are functions of the flame temperature, Tf, 

which varies with radiative loss, it is necessary to rescale all the parameters to a fixed, 

absolute reference state [2]. Using the adiabatic flame temperature Tref for 1~ , =−∞FY , 

23.0~ , =∞OY  and LeF = LeO = 1 as the reference state, and denoting the associated 

quantities by the superscript “*”, we have 

( )ref
32

ref
* /exp )/( TTDaTTDa aCa −=  

)/(4 44
ref

3* kcTqRa pρδσκ=  

so that  
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and Eq. (4.34) becomes 



















∂
∂






















−








=∆

−
−

2
0

ref

6

ref

* 11exp4
x
T

A
TT

T
T
T

LeLeDae
f

a
f

OF
hf   (4.47) 

The extinction Damköhler number *
EDa  corresponds to the minimum value of 

Da*, i.e.  

( ) ∞→∂∆∂ *, DaSF γ     (4.48) 

We have known that for a fixed system with given Ra*, all the terms in Eq. (4.47) other 

than ∆ and Da* can be determined. Thus, Eq. (4.47) gives a definite relation between Da* 

and ∆. Substituting Eq. (4.47) into Eq. (4.48) yields the extinction condition 
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    (4.49) 

from which the reduced Damköhler number at extinction, ∆ext, can be solved. Then the 

extinction Damköhler number *
EDa  can be solved by substituting ∆ext into Eq. (4.47).  

 

4.3. Results and Discussion 

We use the CH4/Air counterflow diffusion flame to demonstrate the dual extinction 

characteristics with the effects of radiative loss and non-unity Lewis numbers. The 

system parameters adopted are ∞∞− = TT ~~ = 300K, aT~ = 24,000K, cp = 0.334 kcal/Kg-K 

and q  = 11,990 kcal/Kg. The boundary conditions for the fuel and oxidant fractions are 

fixed at −∞,
~ FY = 1 and ∞,

~ OY = 0.23, respectively, throughout this study unless otherwise 
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specified. Thus, the initial mixture strength, defined as ∞−∞= ,,
~/~

OF YYνφ , is 17.4 in the 

current study. 

Figure 4.2 shows variations of the flame location, xf, with the fuel and oxidant 

Lewis numbers, LeF and LeO, respectively. It is seen that the flame is always located at 

the oxidant side of the stagnation surface over the entire ranges of LeF and LeO, which is a 

consequence of the stoichiometric nature of diffusion flames. Furthermore, it is seen that 

with the decrease of LeF (LeO), the flame moves toward the oxidant (fuel) side and LeF 

has a much stronger effect on the flame location than LeO. This is because for the current 

problem the flame is located in the oxidant side of the stagnation surface. Thus, fuel 

diffusion has to overcome convection of the opposite direction to supply the fuel to the 

flame. Consequently, fuel diffusion plays a more important role than that of the oxidant 

such that variation of LeF leads to a much larger shift of xf. 

Figure 4.3 shows variations of the coefficient of the fuel leakage in the total 

excess enthalpy, CF, with LeF and LeO for different values of Ra*, respectively. Here only 

the results for CF are presented because the flame is located in the oxidant side of the 

stagnation surface for the current problem such that γ is sufficiently larger than zero and 

hence SF >> SO. It is seen that CF decreases with increasing LeF, LeO and Ra* and for LeF 

> 1, LeO > 1 and Ra* > 0, CF is always negative. Thus, the excess enthalpy is always 

negative under theses parameters. For flames with radiative loss, the only possibility for 

the excess enthalpy to be positive is that the Lewis numbers are sufficiently smaller than 

unity.  

Figure 4.4 shows the fuel leakage SF as functions of the reduced Damköhler 

number D (Fig. 4.4a) and Da* (Fig. 4.4b) for LeF = LeO = 1 and different values of Ra*. It 
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is seen that there exist minimum values for D and Da*, c∆  and *
EDa , and there are two 

branches of solutions when ∆ > ∆c and **
EDaDa > , respectively. However, because of 

the nonlinear relation between D and Da*, Dc does not coincide with *
EDa  except for the 

case of zero excess enthalpy when LeF = LeO = 1 and Ra* = 0. It is noted that flame 

extinction corresponds to the minimum of Da*, *
EDa , which is a parameter that can be 

independently specified. However, it does not correspond to the minimum of D, Dc, 

which is not an independently specifiable parameter because it depends on the value of γ 

determined from the leading order solutions. As shown in Fig. 4.4b, the turning point Dc 

in the SF ~ D plot, indicated by the “x” symbol, is located on the upper branch of the SF ~ 

Da* plot. The extinction limit here, *
EDa , indicated by the “♦” symbol, corresponds to the 

kinetic extinction limit at high stretch rates. Near this limit increasing Da* leads to longer 

residence time and hence more complete burning and less reactant leakage. Thus, the 

lower branch is the physically realistic solution. Figure 4.4b also shows that the SF ~ Da* 

curve shifts to the right with increasing Ra*. This means that for larger Ra* a higher Da* 

is required for steady burning in order to compensate for the effect of radiative loss, and 

for a fixed Da* the amount of fuel leakage SF with larger Ra* is more than that with 

smaller Ra*. Consequently, the extinction limit, *
EDa , increases with *Ra .  

To illustrate the effect of neglecting the excess enthalpy on the prediction of the 

extinction limit, the SF ~ Da* curves for different Ra* without considering the excess 

enthalpy are also plotted in Fig. 4.4b. It is observed that the fuel leakage at the same Da* 

and the extinction Damköhler number, *
EDa , are underestimated due to the omission of 

the excess enthalpy, and this underestimation becomes more significant with increasing 
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Ra*. This is because the excess enthalpy is negative for the parameters used in this figure 

(LeF = LeO = 1 and Ra* > 0) and therefore tends to weaken the flame. Thus omitting it 

would lead to flames that are more resistant to extinction, with smaller values of *
EDa .  

For a given Ra*, the extinction Damköhler number, *
EDa , can be solved from Eqs. 

(4.47) and (4.49). However, because both Ra* and Da* depend on the stretch rate k, the 

*
EDa  solved for a fixed Ra*, such as those in Fig. 4.4b, is only relevant for studying the 

effects of varying the fuel/oxidant system for a counterflow of fixed stretch rate. On the 

other hand, an equally relevant question to ask is the effect of varying the stretch rate for 

a fixed fuel/oxidant system. Because of the inverse dependence of both Ra* and Da* on k, 

the relative effect of radiative heat loss can be evaluated by defining a parameter 

** DaRa=Γ  [2], which represents the relative strength of the radiative loss to the 

chemical heat release. It depends only on the thermo-chemical parameters, but is 

independent of the stretch rate k. Thus, in additional to Eqs. (4.47) and (4.49), the 

extinction Damköhler numbers also need to satisfy Γ=** DaRa  at the same time and 

hence can be obtained from the intersection points between the *
EDa  ~ Ra* curves and the 

Γ** ~ RaDa  lines. Figure 4.5 shows the variation of *
EDa  with Ra* for LeF = LeO = 1 

and the Da* ~ Ra*/Γ lines for different values of Γ. It is seen that for a fixed system with 

Γ smaller than the critical value 298.0≈Γc , there are two intersection points and hence 

two extinction limits at different level of radiative loss. The one at smaller Ra* leads to a 

smaller extinction Damköhler number, namely *
,KEDa , and hence corresponds to the 

kinetic extinction limit, whereas the one at larger Ra* corresponds to the radiative 

extinction limit occurring at a larger Da*, namely *
,REDa . Thus, steady burning is only 



www.manaraa.com

 115

possible within a limited range of Damköhler number, *
,

**
, REKE DaDaDa << . 

Furthermore, it is seen that with increasing Γ the two extinction Damköhler numbers 

approach each other and there is no intersection point once Γ  exceeds the critical value, 

cΓ . This trend can be observed more clearly from the plot of the dual extinction 

Damköhler numbers versus Γ, shown in Fig. 4.6. It is seen that *
,REDa  decreases and 

*
,KEDa  increases with increasing Γ, and the two branches of extinction Damköhler 

numbers ultimately merge at cΓ=Γ  so that burning is not possible regardless of the 

stretch rate for Γ  > cΓ . Furthermore, it is noted that the merging is mostly effected by 

reducing *
,REDa  instead of increasing *

,KEDa . Thus, *
,REDa  is more sensitive to Γ  than 

*
,KEDa . This is because *

,REDa  is usually much larger than *
,KEDa  and hence increasing Γ  

implies a much larger increase of radiative loss at the radiative limit than the kinetic limit. 

Consequently, the extent of the decrease in *
,REDa  with increasing Γ  is much larger than 

the increase in *
,KEDa . To illustrate the effect of missing the excess enthalpy on the dual 

extinction limits, result without considering the excess enthalpy is also shown in Fig. 4.6 

by the dashed curve. It is seen that while neglecting the excess enthalpy only has a very 

small effect on the kinetic extinction limit, it has a much larger effect on the radiative 

limit. This is due to the much larger radiative loss at the radiative extinction limit. As 

shown in Fig. 4.3, the excess enthalpy is negative and decreases with increasing radiative 

loss. Thus, the absolute value of the excess enthalpy at the radiative limit is much larger 

than that at the kinetic limit, and neglecting it as a factor of weakening the flame leads to 

an O(1) overestimation of *
,REDa  and a slight underestimation of *

,KEDa . For example, at 
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Γ = 0.26 missing the excess enthalpy leads to a 60% overestimation of *
,REDa  and a 13% 

underestimation of *
,KEDa .  

Figure 4.7 shows variations of the fuel leakage SF with Da* for LeF = LeO =1 and 

different values of Γ . It is seen that the solutions are bounded by the two turning points, 

with the one at smaller Da*, marked by “♦”, represents the kinetic extinction limit, *
,KEDa , 

and the one at larger Da*, marked by “○”, represents the radiative limit, *
,REDa . It is 

shown from the lower branch solution that with increasing Da* from *
,KEDa , SF first 

decreases significantly and then levels off and finally increases as Da* approaches *
,REDa , 

leading to the second turning point at larger Da*. This trend is due to the fact that 

radiative loss is rather small near the kinetic extinction limit and insufficient residence 

time is the dominant mechanism for the excessive reactant leakage. Thus, increasing Da* 

leads to a longer residence time and consequently more complete burning and less 

reactant leakage. However, for a fixed system increasing Da* (decreasing the stretch rate) 

implies that the radiative loss, Ra*, increases at the same time. Thus, at large enough Da*, 

the radiative loss eventually becomes dominant and is expected to lead to substantial 

reduction in the flame temperature, and hence increased reactant leakage due to the 

substantial reduction in the reaction rate. Thus it can be concluded that the ultimate cause 

of extinction at the radiative limit is still the insufficient time for adequate reaction to 

complete. Moreover, it is seen that the fuel leakage SF at the radiative extinction limit is 

smaller than that at the kinetic limit. This is because near the radiative limit, the flame is 

much weaker and hence is susceptible to extinguish with smaller reactant leakages. The 

upper branch of the solutions, plotted in dotted lines, shows the opposite dependence on 
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Da* and thus is not physically realistic. The two branches of solutions form a closed 

isola-shaped SF ~ Da* curve with two turning points instead of only one for the open C-

shaped curve shown in Fig. 4.4b.  

Figure 4.8 shows variations of the normalized flame temperature Tf/Tad with Da* 

for LeF = LeO = 1 and different values of Γ , where Tad is the adiabatic flame temperature. 

It is seen that although the reactant leakage decreases and then increases with Da*, as 

shown in Fig. 4.7, the flame temperature decreases monotonically because the flame 

suffers more radiative loss with larger Da*. 

We now study effects of the Lewis numbers of the fuel and oxidant, LeF and LeO, 

on the extinction characteristics of the counterflow diffusion flame with radiative loss. 

Figure 4.9 shows variations of the extinction Damköhler number, *
EDa , with LeF and LeO 

for different values of Ra*, respectively. It is seen that for the adiabatic flame (Ra* = 0), 

*
EDa  increases monotonically with increasing LeO and LeF, consistent with the results of 

Seshadri & Trevino [11]. In the presence of radiative loss, *
EDa  increases monotonically 

with LeO whereas it decreases and then increases with LeF. Specifically, at small LeF, 

*
EDa  is very sensitive to the radiative loss such that even a very small amount of loss, e.g. 

Ra*=2E-4, is able to induce a very large relative increase of *
EDa . However, at larger LeF 

this sensitivity becomes moderate, leading to the non-monotonic dependence of *
EDa  on 

LeF for a fixed Ra*, as shown in Fig. 4.9a. The ratio of *
EDa  to its adiabatic value, *

ad,EDa , 

can be obtained from Eq. (4.47)  

( )
ad ext,

ext
ad,

ad

6

ad
*

ad,

*

exp11exp
∆
∆

−





















−










= ff

f
a

fE

E hh
TT

T
T
T

Da
Da   (4.50) 



www.manaraa.com

 118

where the subscript “ad” designates the value corresponding to the adiabatic state, i.e. Ra* 

= 0. It is seen from Eq. (4.50) that radiative loss modulates *
EDa  through its effects on the 

flame temperature, )]/1/1(exp[)/( ad
6

ad TTTTTf fafT −= , excess enthalpy, 

( )ffh hhf −= ad,exp , and the reduced extinction Damköhler number ad ext,ext / ∆∆=∆f . 

Thus, it is necessary to evaluate their relative contributions to *
EDa  at different Lewis 

numbers and radiative loss.  

Figure 4.10 shows variations of *
ad,

*
EE DaDa , fT, fh and f∆ with LeF and LeO for 

Ra* = 2.E-4, respectively. It is seen that the relative contributions from fT, fh and f∆ are 

different at small and large values of LeF and LeO. Specifically, at small LeF, radiative 

loss induces a very large increase of ∆ext, which contributes mostly to the increase of 

*
EDa . This contribution decreases significantly with increasing LeF such that the 

contribution from the temperature term, fT, becomes dominant at large LeF. Over the 

entire range of LeF, the contribution from the excess enthalpy, fh, is secondary. However, 

it contributes most to the increase of *
EDa  at small LeO, as shown in Fig. 4.10b. The 

contribution then decreases significantly with increasing LeO and becomes a secondary 

effect as LeO is sufficiently large. The variation of fD with LeO shows the opposite trend to 

fh. It is small at small LeO but increases with increasing LeO and becomes comparable 

with fT at large LeO. Over the entire range of LeO, fT plays a consistently important role, 

although it is a little smaller than fh at small LeO. The radiative loss, Ra* = 2.E-4, used in 

Fig. 4.10 can be treated as a typical order of value at which kinetic extinction occurs. 

Figure 4.11 shows variations of *
ad,

*
EE DaDa , fT, fh and f∆ with LeF and LeO, respectively, 

for Ra* = 0.01, which can be considered as a typical value at which radiative extinction 
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occurs. For example, for LeF = LeO = 1 and Γ = 0.1, the kinetic and radiative extinction 

occur at Ra* = 1.2E-4 and 0.017, respectively. It is seen from Fig. 4.11 that the variations 

of fD and fh with LeF and LeO exhibit the same trend as those for small radiative loss 

Ra*=2.E-4, whereas the relative contribution from the temperature term, fT, is much larger. 

This is due to the larger reduction of the flame temperature under larger radiative loss. 

Furthermore, Figs. 4.10a and 4.11a show that it is the very large increase of ∆ext from the 

adiabatic value at small LeF that leads to a very large relative increase of *
EDa , as shown 

in Fig. 4.9a.  

Because Eq. (4.36) shows that the minimum of ∆, ∆c, is determined by γ and in 

general the reduced extinction Damköhler number, ∆ext, is close to ∆c, it is instructive to 

explore the very high sensitivity of ∆ext to radiative loss at small LeF by studying the 

variations of γ with LeF. Figure 4.12 shows variations of γ and the corresponding ∆ext 

with LeF for different values of Ra*, respectively. It is seen that for the adiabatic flame, γ 

is close to unity at small LeF, implying that most of the chemical heat release is 

conducted to the oxidant side and the flame is nearly adiabatic to the fuel side. This is 

because at small LeF the flame location is very close to the oxidant stream. It is seen from 

Fig. 4.12b that in this case ∆ext is close to zero. However, in the presence of radiative loss, 

which is assumed to occur at both sides of the reaction zone in the current study, the 

flame always has heat conducted to the fuel side to compensate for the radiative loss. 

Thus, γ decreases, leading to an increase of ∆ext from its adiabatic value. Furthermore, 

because the adiabatic value of ∆ext is close to zero, even a small increase of ∆ext from this 

value, induced by a very small amount of radiative loss, implies a very large relative 

increase in ∆ext. For example, at LeF = 0.5, with the radiative loss Ra* = 2.E-4, γ decreases 
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from 0.98 to 0.93 whereas ∆ext increases from 0.053 to 0.18 which is about 3.4 times 

larger.  

For a fixed system with radiative strength Γ, however, we have known that the 

extinction Damköhler number needs to satisfy Ra*/Da* = Γ at the same time. Thus, Fig. 

4.9 alone is not enough to demonstrate variations of the dual extinction Damköhler 

numbers with the Lewis numbers. In the same manner as that in Fig. 4.5, Fig. 4.13 shows 

variations of *
EDa  with Ra* for LeF  = 1, Γ = 0.1 and different values of LeO and the 

Γ** ~ RaDa  line with Γ = 0.25. It is seen that due to the monotonic increase of *
EDa  

with LeO , increasing LeO leads to an increase of *
,KEDa  and a decrease of *

,REDa , and 

hence a smaller flammable range of Da*. Furthermore, it is expected that there are no 

intersection points between the *
EDa  ~ Ra* curve and the Γ** ~ RaDa  line if LeO is 

larger than a critical value, indicating that steady burning is not possible if LeO is too 

large.  

Figure 4.14 shows variations of the dual extinction Damköhler numbers with Γ 

for different values of LeO and LeF, respectively. It is seen that for the same G the 

flammable range of Da* diminishes with increasing LeO, leading to a smaller Γc that the 

system can sustain. Thus increasing LeO tends to weaken the flame monotonically. 

Although the dependence of *
EDa  on LeF is not monotonic over its entire range, Fig. 4.9a 

shows that, with an increase of LeF, *
EDa  decreases and increases monotonically for 

small and large LeF respectively. Thus, for the same reason, it is seen from Fig. 4.14b that 

the flammable range of Da* diminishes as LeF increases from 1.5 to 2.5, and extends as 

LeF increases from 0.6 to 0.8. It is noted that Mills & Matalon [8] predicted monotonic 
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dependence of the flammable range of Damköhler number on the Lewis number of the 

fuel, LeF. This is because the radiative loss was assumed to be an O(ε) quantity and hence 

does not affect the leading order flame temperature. Thus radiative loss affects extinction 

only through the excess enthalpy which depends monotonically on LeF. 

Figure 4.15 shows variations of the dual extinction Damköhler numbers with LeF 

for different values of LeO and Γ = 0.1. It is seen that the flammable range of Da* 

decreases with increasing LeO and LeF as it is sufficiently large. When they are both large 

enough, steady burning is not possible for this value of Γ. With the increase of LeO, the 

maximum value of LeF the system can sustain decreases. Figure 4.15 indicates that steady 

burning for radiative diffusion flames is only possible within a limited range of Lewis 

numbers. This is because flame extinction is purely thermal in nature under the 

assumption of one-step reaction and since thermal conduction and radiation are both heat 

loss mechanisms for flame extinction; extincton is induced if either of them is large 

enough. 

 

4.4. Conclusions 

The present study has yielded the following specific contributions and understandings 

regarding the subject phenomena. First, we have performed a multi-scale asymptotic 

analysis for the counterflow diffusion flame with flame radiative heat loss, and developed 

a formulation for general Lewis numbers of the fuel and oxidant with the proper 

consideration of the excess enthalpy that was overlooked in previous analyses. This 

formulation is expressed by the jump relations in terms of the outer solutions and the 

reactant leakages through the reaction zone. The reactant leakages are obtained from 
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solving the canonical form of the structure equation and hence can take advantage of 

previous results, such as those of Cheatham & Matalon [9]. The reason for the structure 

equation of the reaction zone, with a radiation zone sandwiching it in the current analysis, 

still can degenerates to Liñán’s canonical form [3] is that the thin reaction zone is 

reactive-diffusive in nature. Consequently, its structure may not be directly affected by 

the particulars of the system. Thus, it is possible to perform a generalized analysis of the 

reaction zone with the influences of all the outside processes including radiative loss 

coming in from the boundary conditions through matching.  

Second, this formulation is then applied to study the extinction characteristics of 

the radiative counterflow diffusion flame with non-unity Lewis numbers of the fuel and 

oxidant. In addition to the dual extinction limits, namely the kinetic limit at lower 

Damköhler numbers and radiative limit at higher Damköhler numbers, identified in 

previous analyses [2, 4-5], the current study has also gained some additional 

understandings, especially on the effects of non-unity Lewis numbers. It is found that the 

kinetic extinction limit is minimally affected by radiative loss so that extinction occurs 

close to the adiabatic flame temperature, while substantial amount of heat loss is 

associated with the radiative limit such that the flame temperature at extinction is 

significantly reduced from the adiabatic value. Reactant leakage, however, is ultimately 

the root cause for both limits, with the extent of leakage being higher for the kinetic limit. 

The flammable range of the Damköhler number decreases monotonically with increasing 

LeO, indicating that increasing LeO tends to weaken the flame. However, this range shows 

non-monotonic dependence on LeF in that it increases and decreases with increasing LeF 

as it is sufficiently small and large respectively. This non-monotonic dependence is due 
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to the very high sensitivity of the extinction Damköhler number to radiative loss at small 

LeF. The cause for this phenomenon is that the flame is located very close to the oxidant 

stream at small LeF so that most of the chemical heat release is conducted to the oxidant 

side and the flame is nearly adiabatic to the fuel side. A small amount of radiative loss 

can lead the flame to deviate from this condition and hence to a rather large relative 

increase of the extinction Damköhler number. The influence of radiative loss on the 

extinction Damköhler numbers is found to be through its effects on the flame temperature, 

excess enthalpy and the reduced extinction Damköhler number, and their relative 

contributions are different under different radiative loss and Lewis numbers of the fuel 

and oxidant. In most cases, the contribution from the flame temperature is the largest and 

its relative importance increases with increasing radiative loss. The contributions from 

the other two, however, are also important in some cases. At small LeF when the flame is 

located very close to the oxidant stream, the contribution from the reduced extinction 

Damköhler number is large and even dominant in the case of small radiative loss. The 

contribution from the excess enthalpy is important for small LeO and it may be 

comparable to that from the flame temperature when radiative loss is small. Thus, 

overlooking the excess enthalpy in previous analyses may result in rather large errors in 

the predicted extinction Damköhler numbers, especially the kinetic one. Moreover, it is 

found that for a fixed relative radiative strength, steady burning may not be possible 

when the Lewis numbers of the fuel and oxidant are too large. Finally, it should be noted 

that the above discussions are meant for large initial mixture strengths so that the flame is 

located in the oxidant side of the stagnation surface. The roles of LeF and LeO should be 
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interchanged for small initial mixture strengths under which the flame is located in the 

fuel side of the stagnation surface.  

Third, the relations (4.37)-(4.41), developed in this study for the counterflow 

diffusion flame with flame radiation as a demonstration problem, can be applied to any 

one-dimensional configuration with Eq. (4.41) revised as 
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where uf is the flow speed at the flame sheet.  

Furthermore, although this formulation is applied exclusively to the extinction 

analysis in the current study, it is also applicable to the analyses of thermal-diffusive 

instabilities in a similar manner as those in Cheatham & Matalon [9] and Kukuck & 

Matalon [10]. For example, we introduce small perturbations in the form 

)exp())(),(),((),,(),,( 1,, tyikxwxvxuYYTYYT bObFbOF σεα ++=  (4.51) 

where the subscript “b” designates the basic steady state solutions, y is the transverse 

direction, k1 the wave number in this direction, σ a complex number whose real part 

identifies the growth rate of the perturbation, a a small parameter and u, v and w the 

perturbations for T, YF and YO, respectively. Substituting Eq. (4.51) into the governing 

equations (4.1)-(4.3) and Eqs. (4.37)-(4.41) yields the governing equations and the jump 

and leakage conditions for the perturbations, from which the dispersion relation relating 

the growth rate to the parameters describing the combustion system, such as the 

Damköhler number and the Lewis numbers of the fuel and oxidant, is formed. Because 

this model is able to predict the dual extinction limits of radiative diffusion flames, it is 

expected to predict the neutral stability boundaries near both the kinetic and radiative 
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extinction limits. This work will be discussed in detail in the next chapter using the same 

chambered planar flame as that in Chapter 2.  

Finally, it should be emphasized that although the inclusion of excess enthalpy 

does not lead to qualitative differences in the extinction results, it is a crucial element in 

the stability analyses, as indicated by Matalon [12]. Thus, the model developed in this 

chapter with the proper consideration of the excess enthalpy is essential for the following 

studies on the flame oscillations driven by the thermal-diffusive instability in radiation-

affected diffusion flames.  
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Appendix 

Integrating Eq. (4.23) and applying the matching conditions, −∞Θ
±∞→

± ~2 ζ
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Multiplying Eq. (4.24) by ζdd /2
±Θ , integrating once and applying the matching 

conditions (4.12) for ζdd /1
±Θ , ζdd /2

±Θ  and ±Θ2  as ±∞→ζ  yield 
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Substituting Eq. (4.23) into (4.A3) to replace the term ( )fTRa /exp 2
±Θ  by 2

2
2 / ζdd ±Θ , 

integrating once and applying the matching condition (4.12) for ±Θ1  and ±Θ2  as ±∞→ζ  
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Integrating Eq. (4.25) once in the same manner yields 
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where ±C  are integral constants. Substituting Eq. (4.A4) into (4.A6) to replace the term 
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Figure 4.1. Schematic of a counterflow diffusion flame. 
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Figure 4.2. Variations of the flame sheet location, xf, with the fuel and oxidant Lewis 

numbers, LeF (LeO = 1) and LeO (LeF = 1). 
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Figure 4.3. Variations of the coefficient of fuel leakage in the total excess enthalpy, CF, 

with LeF (LeO = 1) (a), and LeO (LeF = 1) (b), for different values of radiative loss, Ra*. 
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Figure 4.4. Fuel leakage SF as functions of the reduced Damköhler number D and 

Damköhler number Da* for LeF = LeO = 1 and different values of radiative loss, Ra*. 
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Figure 4.5. Variations of the extinction Damköhler number, *
EDa , with the radiative loss, 

Ra*, for LeF =LeO =1 and the *Da  versus Γ*Ra  lines for different relative radiative 

strength, Γ. 
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Figure 4.6. Variations of the dual extinction Damköhler numbers with the relative 

radiative strength Γ for LeF = LeO = 1 with and without considering the excess enthalpy. 
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Figure 4.7. Fuel leakage SF as a function of the Damköhler number Da* for LeF = LeO = 1 

and different relative radiative strength Γ. 

 



www.manaraa.com

 136

 

 

10-3 10-2 10-1 100
0.80

0.85

0.90

0.95

1.00

0.25

0.2

0.15
Γ=0.1

 Da*E,K
 Da*E,R

T f
 /T

ad

Da*  

 

Figure 4.8. Variations of the normalized flame temperature ad/TTf  with the Damköhler 

number Da* for LeF = LeO = 1 and different relative radiative strength Γ. 
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Figure 4.9. Variations of the extinction Damköhler number *
EDa  with LeF (LeO = 1) (a), 

and LeO (LeF = 1) (b), for different values of radiative loss, Ra*. 
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Figure 4.10. Variations of the ratio of the extinction Damköhler number *
ad,

* / EE DaDa  and 

the contributions from the effects of radiative loss on the flame temperature, fT, excess 

enthalpy, fh, and the reduced extinction Damköhler number, f∆, with LeF (LeO = 1) (a), 

and LeO (LeF = 1) (b), for radiative loss Ra* = 2.E-4. 
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Figure 4.11. Variations of the ratio of the extinction Damköhler number *

ad,
* / EE DaDa  and 

the contributions from the effects of radiative loss on the flame temperature, fT, excess 

enthalpy, fh, and the reduced extinction Damköhler number, f∆, with LeF (LeO = 1) (a), 

and LeO (LeF = 1) (b), for radiative loss Ra* = 0.01. 
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Figure 4.12. Variations of γ (a), and the reduced extinction Damköhler number ∆ext (b), 

with LeF for LeO = 1 and different values of radiative loss, Ra*. 
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Figure 4.13. Variations of the extinction Damköhler number, *
EDa , with radiative loss, 

Ra*, for LeF = 1, Γ = 0.1 and different values of LeO and the Da* versus Γ*Ra  line with 

relative radiative strength Γ = 0.25. 
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Figure 4.14. Variations of the dual extinction Damköhler numbers with relative radiative 

strength Γ for different values of LeO (LeF = 1) (a), and LeF (LeO = 1) (b). 
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Figure 4.15. Variations of the dual extinction Damköhler numbers with LeF for different 

values of LeO and relative radiative strength Γ = 0.1. 
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Chapter 5: Intrinsic Oscillation in Radiation-Affected 

Diffusion Flames 

 

5.1. Background 

In this chapter, we conduct a linear stability analysis on the onset of intrinsic flame 

oscillations in 1D chambered planar flames with radiative heat loss. The primary 

objective of the present study is to generalize the oscillatory instability analysis of [1] to 

include arbitrary heat loss so that it is applicable to situations near both the kinetic and 

radiative extinction limits. Drawing insight from the results of Chapter 4 that the steady-

state reaction zone structures and the states of extinction for both the kinetic and radiative 

extinction limits are canonically the same, being described by Liñán’s solution [2], it is 

reasonable to expect that a similar canonical representation should also exist for the 

kinetically and radiatively induced oscillation. The fact that oscillation can develop near 

either extinction limit has also been demonstrated through several numerical studies [3-5]. 

Specifically, Christiansen et al. [3] simulated the transient behavior of burner-supported 

spherical diffusion flames using detailed chemistry and transport, and observed 

oscillatory instability near both limits. It is further found that flame oscillation near both 

limits always grows in amplitude leading to flame extinction, although the flame near the 

radiative limit is able to sustain longer time of oscillation. Sohn et al. [4] studied the 

nonlinear evolution of oscillation triggered by radiative heat loss in a diffusion flame 

established in the stagnant mixing layer, and identified three different transient flame 
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evolution behaviors, namely decaying oscillatory solution, diverging solution to 

extinction, and stable limit-cycle solution, with the last one achievable only near the 

radiation limit. Miklavčič et al. [5] numerically studied the island [6] evolution from the 

S-curve of steady states and flame oscillation in radiating diffusion flames, and found that 

stable oscillation may develop at large Damköhler numbers if radiative loss is sufficiently 

large.  

The formulation and results are sequentially presented in the following. It will be 

shown that we have indeed succeeded in obtaining a unified solution that describes the 

loss of stability at both the kinetic and radiative limits. Using this general solution, 

interesting characteristics of radiation-induced oscillation are identified. 

 

5.2. Formulation 

5.2.1. Governing Equations 

We consider the same 1D flame configuration as those in Chapters 2 and 3, as shown in 

Fig. 5.1 with the structure of the radiation zone. With the same assumptions as those 

employed in Chapter 4, the appropriate nondimensional governing equations can be 

written as 

Rq
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subject to the boundary conditions 
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01 === ∞− OF YYTT       as −∞→x    (5.4) 

10 −
∞− ==∆+= φOF YYTTT    at 0=x    (5.5) 

where ( )TTYYDa aOFC −= expω  is the chemical reaction rate, 

)~~/(4 25243 UcTqq pR ρλσκ=  the radiative heat loss, )~/(~ 2
, UcWYBDa pFOFKC λν−∞=  the 

collision Damköhler number, λ and U respectively denote the thermal conductivity and 

convection velocity, and the over-tilde “~” designates dimensional or unscaled quantities. 

Here and hereafter, all the unspecified parameters have been defined in previous chapters.  

Equations (5.1)-(5.3) are subjected to the jump and leakage conditions derived in 

Chapter 4 with only Eq. (4.31) being accommodated with the current flame configuration: 
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and )/exp(3
faC TTDaDa −= ε . 
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5.2.2. Steady-State Basic Solutions 

Applying the boundary conditions and the jump relations (5.4)-(5.7), the O(1) outer 

solutions, T0, YF,0 and YO,0 can be respectively solved as 
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where the flame location xf and temperature Tf are solved from the jump relation (5.7) as 
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  (5.13) 

As discussed in Chapter 4, Eq. (5.13) states that the heat release is conducted 

away from the reaction zone to both sides. Radiative heat loss enhances heat conduction 

through the term 2RaTf to compensate for the heat loss, and suppresses it through the 

reduction of the temperature gradient. Thus, the net effect of radiative loss is to modify 

the heat conduction rate, and as such it plays the similar role as varying the thermal 

diffusivity of the reactants.  

Applying the homogeneous boundary conditions as well as the jump and leakage 

conditions (5.8)-(5.10) for the O(ε) outer solutions, T1, YF,1 and YO,1 can be completely 
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determined. Here we only show them in the form of excess enthalpies, hF and hO, because 

they are the reason why the O(ε) outer solutions are required. Thus we have 
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5.2.3. Linear Stability Analysis 

We introduce small planar perturbations, with amplitude 1<<α , superimposed onto the 

steady-state basic solutions identified below by subscript “b”: 

))(),(),((),,(),,( ,, xwxvxueYYTYYT t
bObFbOF

σεα+=    (5.14) 

where σ is a complex number whose real part identifies the growth rate of the 

perturbation. Substituting Eq. (5.14) into the chemically and radiatively frozen form of 

Eqs. (5.1)-(5.3) yields the governing equations for the perturbations, 

0=−− uuu xxx σ      (5.15) 

0=−− vLevLev FxFxx σ     (5.16) 

0=−− wLewLew OxOxx σ     (5.17) 
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Equations (5.15)-(5.17) are subjected to the homogeneous boundary conditions at 

−∞→x  and x = 0 and can be solved as 
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where OFTJ ,,=  correspond to the solutions of u, v and w, respectively, and we have 

employed the notation  

σλ JJJ LeLe += 2)2/(  

with LeT = 1. The integration constants −
JC  and +

JC  are to be determined through the 

jump and leakage conditions for the perturbations that are derived by inserting Eq. (5.14) 

into Eqs. (5.8)-(5.10), 

[ ] [ ] [ ]wLevLeAu OF
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(5.20) 

{ } { } 02)1()1()1()1( =−++−+++− −+−−++ wbvLebLeuAbLeuAbLe OFOOOOOO γγγγ  

(5.21) 

where bbibi Sb ∆∂∆∂∆= ),(γ , (i=F, O), and ∆b is the reduced Damköhler number 

evaluated at the steady state condition.   

The jump relations (5.18) and (5.19) yield 

011 =−+− −−+−−−++ vLevLeuAuA FF     (5.22) 

011 =−+− −−+−−−++ wLewLeuAuA OO    (5.23) 

0)21( 1 =−+++ −−+−+ vLevfuguf FFFTT λ    (5.24) 
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0)21( 1 =−+++ −−+−+ wLewfuguf OOOTT λ    (5.25) 

where 

( ) ++ ++−= AxBf fTTT )coth(2/1 λλ  

( ) −− +−= ABg TT /2/1 λ  

)coth(2/1 1
fiiii xLef λλ−+−= , i=F, O.  

The six equations (5.20)-(5.25) form a homogeneous linear system whose 

solvability condition yields the dispersion relation 
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(5.26) 

The dispersion relation (5.26) relates the complex growth rate σ of the parameters 

describing the combustion system: the Damköhler number Da, the radiative loss, the 

Lewis numbers LeF and LeO, the initial mixture strength φ  and the temperature difference 

∆T.  

 

5.3. Results and Discussion 

5.3.1. Dual Extinction Limits 

For the same reason as stated in Chapter 4, the radiative loss parameter, Ra, and 

Damköhler number, Da, need to be rescaled to a fixed reference state as  
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ref
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ref

* /TTRaRa f=  

where Tref is the adiabatic flame temperature at the reference state with LeF = 1, LeO = 1, 

φ = 1 and DT = 0. The relevant parameters adopted are 16.12=aT  and 152.0=∞−T . 

Because of the inverse dependence of both Ra* and Da* on the convection velocity U~ , 

the effect of radiative loss can be evaluated by defining a parameter ** DaRa=Γ  which 

represents the relative strength of the radiative loss to the chemical heat release [6]. Γ  is 

independent of U~  and for a fixed Γ , increasing Da* (decreasing U~ ) implies that Ra* and 

hence the radiative loss increases at the same time. Thus, at large enough Da*, radiative 

loss becomes dominant and leads to substantial reduction in the flame temperature and 

hence increased reactant leakage. This dependence of reactant leakage on Da* is shown 

by the lower branch of the solutions in Fig. 5.2 for different values of Γ . The upper 

branch shows the opposite dependence on Da* and thus is not physically realistic. The 

two solution branches form an isola for the SF ~ Da* curve with two turning points 

instead of only one for the open C-shaped curve in the absence of radiative loss (see, for 

example, Fig. 4.4a). The turning point marked by “■” at smaller Da* represents the 

kinetic extinction limit, *
,KEDa , while that at larger Da* marked by “▲” represents the 

radiative limit, *
,REDa . Burning is only possible when *

,
**

, REKE DaDaDa << . 
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Figure 5.3 shows variations of the kinetic and radiative extinction Damköhler 

numbers with G for different LeO. The upper and lower branches respectively represent 

the radiative and kinetic extinction limits. It is seen that the flammable range of Da* 

diminishes with increasing Γ , and that burning is not possible when Γ  exceeds a 

maximum value, maxΓ . Furthermore, this maximum loss decreases significantly with 

increasing LeO, for which the flame sheet moves closer to the cold oxidant boundary, 

leading to lower flame temperatures. The flame is therefore weaker and as such is only 

able to sustain smaller radiative loss. For the same reason, increasing f and decreasing 

DT play a similar role as increasing LeO. 

 

5.3.2. Onset of Near-Limit Oscillations 

We note that without radiative loss, 1=±A  and the dispersion relation (5.26) recovers to 

that of Kukuck & Matalon [1] for adiabatic diffusion flames, which has been shown to 

fail to have a solution as ∞→*Da  or 1== OF LeLe , indicating that the flame is 

unconditionally stable under these circumstances. In the presence of radiative loss, 

however, we have shown in Figs. 5.2 and 5.3 that burning is only possible within a 

limited range of the Damköhler number, namely *
,

**
, REKE DaDaDa << . Thus, the case 

∞→*Da  does not exist for the present study. For a given set of prescribed parameters 

(LeF = 2, LeO = 1.6, f = 1, DT = 0 and G = 2E-4), we solve from the dispersion relation 

(5.26) the complex growth rate, s, for Da* varying from *
,KEDa  to *

,REDa . Its trace with 

Da* is shown in Fig. 5.4. It is seen that with increasing Da* from *
,KEDa , s moves from 

the positive Re(s) side to the negative side crossing the imaginary axis at *
,KCDa  , 
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implying that the flame transits from the unstable to the stable state. However, unlike the 

adiabatic case [1], s then moves back to the positive Re(s) side with a very close trace, 

crossing the imaginary axis for the second time at *
,RCDa . Since 0)Im( ≠σ  at the 

crossing points, two critical Damköhler numbers, *
,KCDa  and *

,RCDa , corresponding to the 

onset of flame oscillations near the kinetic and radiative extinction limits, respectively, 

are identified. The flame is unstable within the Damköhler number ranges 

*
,

**
, KCKE DaDaDa <<  and *

,
**

, RERC DaDaDa << . The critical Damköhler number *
,KCDa  

has been identified previously by Kukuck & Matalon [1] and Cheatham & Matalon [7]. 

The other critical Damköhler number, *
,RCDa , identified here, indicates that the flame is 

also able to develop spontaneous oscillation near the radiation-induced extinction limit. 

The neutral stability points at *
,KCDa  and *

,RCDa  are marked by “Ñ” and “∆”, respectively, 

on the SF ~ Da* plot in Fig. 5.2. Consequently, steady burning is only possible for 

*
,

**
, RCKC DaDaDa <<  when flame instability is considered. 

Figure 5.5 shows variations of the extinction and critical Damköhler numbers 

with the radiative strength G. It is seen that with the consideration of flame instability, the 

Damköhler number range for steady burning contracts, leading to a smaller maximum 

radiative loss, Gmax, the system can sustain. However the extent of contraction is rather 

small unless G is sufficiently close to Gmax. From Fig. 5.5 we can expect that the 

normalized unstable ranges of the Damköhler number near both limits, namely 

( ) *
,

*
,

*
, KEKEKCK DaDaDa −=Ω  and ( ) *

,
*

,
*

, RERCRER DaDaDa −=Ω , would exhibit a fast 

increase as G approaches Gmax. 
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We now study the dependence of the unstable ranges of the Damköhler number 

on the prescribed parameters, such as LeF, LeO, f and DT. Since radiative loss near the 

kinetic extinction limit has been shown to be relatively small [6] and the flame oscillation 

characteristics near this limit have been studied, hereafter only results for the near-

radiative-limit oscillation will be presented. Figure 5.6 then shows the variations of RΩ  

with LeF for LeO = 1, f = 1, DT = 0 and different G’s. It is seen that, as identified by 

Kukuck & Matalon [1] near the kinetic limit, flame oscillation near the radiative limit is 

also only possible within a restricted range of LeF , and that the unstable range of 

Damköhler number RΩ  increases with increasing radiative loss G. Specifically, 

increasing G extends the upper limit of the unstable range of LeF. However, it is 

important to note that RΩ  approaches zero as 1→FLe  whatever the value of G is, 

implying that flame oscillation is not possible for 1≤FLe  and LeO=1. Although not 

shown here, the same behavior exists for oscillation near the kinetic limit with the same 

set of parameters. This is contrary to results from previous investigations which showed 

that flame oscillation may develop under unity or sub-unity Lewis numbers when 

radiative loss is substantial [3-5, 8]. However, we have shown that radiative loss has two 

opposite effects on the heat transfer to either side of the reaction zone. Thus there exist 

certain parameters for which these two opposite effects cancel out so that radiative loss 

does not play the role of varying thermal diffusivity. This corresponds to the case of 

1=±A  so that the dispersion relation (5.26) degenerates to the one for adiabatic flame, 

from which the flame has been shown to be unconditionally stable for unity Lewis 

number [1]. From Eq. (5.13) the condition 1=±A  yields the relationship f-1+2DT=1 for 

LeF = LeO =1. The parameters we used in Fig. 5.6 satisfy this condition as 1→FLe . Thus 
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we next plot the variation of RΩ  with LeF for different G in Fig. 5.7 with a different set of 

parameters, LeO = 1, f = 1 and DT = 0.1, for which 1≠±A  so that the dispersion relation 

(5.26) may have solutions even when 1== OF LeLe . It is then seen from Fig. 5.7 that 

flame oscillation may indeed develop for LeF well below unity and the unstable range of 

LeF is extended with increasing radiative loss, G. Thus, it can be concluded that the 

imbalance between the thermal and mass diffusions induced by radiative loss under unity 

Lewis numbers triggers flame oscillations near the radiative extinction limit. 

Consequently, the oscillatory instability near the radiative limit can still be considered to 

be thermal-diffusive in nature. 

Figures 5.8a ~ 5.8c respectively show the variation of RΩ  with LeF, f and DT for 

different LeO. It is seen from Fig. 5.8a that for a given LeO instability only occurs within a 

limited range of LeF, and this range can be extended well below LeF=1 with increasing 

LeO. Figure 5.8b shows that the unstable range of Damköhler number, RΩ , increases 

monotonically with f and this increase is significant before the dispersion relation (5.26) 

ceases to have a solution. This is because the maximum radiative loss, Gmax, decreases 

significantly with increasing f (and with increasing LeO and decreasing DT). Thus, with 

increasing f,  Gmax decreases rapidly toward the value of G = 10-5 used in this figure, 

leading to a significant increase in RΩ , as shown in Fig. 5.5. Since Gmax also decreases 

with LeO, this rapid increase in RΩ  with f  occurs at smaller f for higher LeO. Figure 5.8c 

shows that, for LeO = 1.2, oscillation is only possible within a restricted range of DT.  For 

LeO = 1.4 and 1.6, the flame also shows the same tendency, although RΩ  increases 

rapidly with decreasing DT as it is sufficiently small. This rapid increase results from the 
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same reason as above. Furthermore, Fig. 5.8 shows that the unstable range of Damköhler 

number, RΩ , increases monotonically with LeO.  

Lastly, it is shown in Fig. 5.4 that radiative loss only has very slight effect on the 

nondimensional oscillation frequency, )Im(σ . However, in dimensional form the 

frequency is given by thDUf πσ 2)Im(~ 2= , where Dth is the thermal diffusivity. Since 

oscillation near the radiative limit occurs at relatively larger Da* and hence smaller U~ , 

the oscillation frequency near the radiative limit should be smaller than that near the 

kinetic limit. This is consistent with the numerical results of Christiansen et al. [3].  

 

5.4. Conclusions 

We have performed a linear stability analysis on flame oscillation with radiative heat loss 

in one-dimensional chambered diffusion flames using large-activation-energy 

asymptotics. Oscillatory instability near the radiation-induced extinction limit is 

identified, in addition to the one near the kinetic limit that has been identified previously. 

Thus, flame oscillation is also possible when the Damköhler number is sufficiently large, 

and steady burning is only possible if the Damköhler number falls within the two critical 

values corresponding to the marginally stable states near the kinetic and radiative limits, 

respectively. 

It is also shown that although flame oscillation near the radiative limit may 

develop under unity Lewis number, this oscillatory instability is still thermal-diffusive in 

nature. This is because radiative loss plays a similar role as varying the thermal 

diffusivity of the reactants. Thus, the thermal and mass diffusion of the reactants may not 

be balanced even for unity Lewis number. This imbalance leads to intrinsic flame 
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oscillation near flame extinction. Radiative heat loss, however, also affects flame stability 

through the total excess enthalpy 2/)1(2/)1( FO hh γγ −++  in Eq. (5.12), which comes 

from the imbalance of thermal and mass diffusion as the reactants leak through the 

reaction zone, as well as from radiative loss. It is known that oscillatory instability is 

characterized by the negative total excess enthalpy [9] whose value decreases with 

radiative loss. Thus with increasing radiative loss, the negative total excess enthalpy and 

hence flame oscillation can be achieved over a wider parameter range. 

The extinction analysis has shown that there is a maximum radiative loss for a 

combustion system to sustain, above which burning is impossible. As radiative loss 

approaches this maximum value, the unstable ranges of Damköhler number near both 

extinction limits increase dramatically. As radiative loss is sufficiently smaller than this 

maximum value, the unstable range of Damköhler numbers near the radiative extinction 

limit RΩ  shows similar parametric dependence on LeF, LeO and f to that near the kinetic 

limit, namely it increases monotonically with LeO and f and flame oscillation is only 

possible within a restricted range of LeF. However, flame oscillation near the radiative 

limit is only possible within a limited range of DT. This is different from the near-kinetic-

limit oscillation that the unstable range of Damköhler numbers decreases with increasing 

DT.  

Lastly, we note that radiative loss shows only small effects on the nondimensional 

frequency of flame oscillation near both extinction limits. However, since the 

nondimensionalization uses the diffusion time scale and since the radiation-induced 

extinction occurs at relatively larger Damköhler numbers and hence smaller diffusion 
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times, the dimensional oscillation frequency near the radiative limit is found to be smaller 

than that near the kinetic limit.  
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Figure 5.1. The one-dimensional flame configuration. 
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Figure 5.2. Fuel leakage SF versus Da* for different G with the kinetic (■) and radiative 

(▲) extinction limits as well as the neutral stability points (□ and ∆) (with LeF = 2, LeO = 

1.6, f = 1 and DT = 0). 
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Figure 5.3. Extinction Damköhler numbers versus G for different LeO (with LeF = 2, φ = 1 

and DT = 0). The upper branch represents the radiative extinction limit and lower branch 

the kinetic limit.  
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Figure 5.4. Trace of the complex growth rate σ with Da* from *
,KEDa  to *

,REDa  (with LeF 

= 2, LeO = 1.6, φ = 1, DT = 0 and G = 2.E-4). 
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Figure 5.5. Extinction and critical Damköhler numbers versus G (with LeF = 2, LeO = 1.6, 

f = 1 and DT = 0). 

 

100

300

500

700

2.0E-04 2.1E-04 2.2E-04 2.3E-04 2.4E-04

G

Ex
tin

ct
io

n 
an

d 
C

rit
ic

al
  D

a*

*
,KCDa

*
,KEDa

*
,REDa

*
,RCDa



www.manaraa.com

 165

 

 

0.E+00

1.E-04

2.E-04

3.E-04

1.0 1.4 1.8 2.2
Le F

W
R

G = 0.03

0.02

0.01

 

 

Figure 5.6. Normalized unstable range of Damköhler number for flame oscillations near 

the radiative extinction limit versus LeF for different G (with LeO = 1, f = 1 and DT = 0). 
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Figure 5.7. Normalized unstable range of Damköhler number for flame oscillations near 

the radiative extinction limit versus LeF for different G (with LeO = 1, f = 1 and DT = 0.1). 
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Figure 5.8. Normalized ranges of Damköhler number for flame oscillations near the 

radiative limit (a) versus LeF with f = 1, DT = 0 and G = 1.E-4, (b) versus f with LeF = 2, 

DT = 0 and G = 1.E-5, and (c) versus DT with LeF = 1, f = 1 and G = 1.E-4, for different 

LeO. 
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Chapter 6: Linear Response of Stretch-Affected Premixed 

Flames to Flow Oscillations 

 

6.1. Background 

In this chapter we study the response of premixed flames to flow oscillations. This 

problem is of particular interest because it constitutes the key elementary process in the 

development of the thermo-acoustic instability. In particular, the Rayleigh criterion [1] 

can be described by the phenomenological inequality 

∫∫∫∫ Φ> dvdttxdvdttxqtxp ),(),('),('  

where 'p  are 'q  are the perturbations in pressure and heat release, respectively, Φ is the 

acoustic energy dissipation, and the integral is over a period of oscillation and the 

combustor volume. This inequality implies that thermo-acoustic instability occurs only 

when the heat release perturbation is in phase with the flow perturbation and at the same 

time possesses sufficiently large amplitude to overcome the dissipation process. Thus, it 

is essential to determine the response of heat release rate to the flow perturbations. There 

has been a number of work addressing this problem. However, as reviewed in the 

Introduction, these analyses assumed constant flame speed that is independent of flame 

stretch, and as such, are not adequate to study the flame response at high frequencies 

where the curvature of flame wrinkles becomes relatively large. In addition, flame stretch 

is also believed to be responsible for the observed damping of  perturbation-induced 

flame wrinkling [2]. Thus, variations in stretch-induced flame speeds are able to affect 
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the heat release rate not only through the change of local burning rate, but also through 

the modulations of flame surface area. Thus, the objective of this chapter is to study the 

role of flame stretch through the curvature of the flame wrinkles on the premixed flame 

response to flow oscillations. This is further motivated by the recognition that studies 

since the 1980s have conclusively identified the essential and significant influence of 

stretch on the response of both premixed and diffusion flames [3]. The influence is 

further augmented in the presence of nonequidiffusion because of the associated 

modification of the flame temperature. Since the present phenomena involve flame 

wrinkling at various scales, it behooves us to assess how and to what extent they are 

affected by stretch and nonequidiffusion. We shall subsequently show that such an 

influence is indeed significant and as such needs to be accounted for in the analyses of 

combustion instability. 

In the following we shall first report some experimental results for the damping 

phenomenon of the perturbation-induced wrinkling, and show that these observations are 

consistent with the concept of stretch. These results are adapted from our collaboration 

work with Professor Lieuwen of the Georgia Institute of Technology. We shall then 

present the theoretical analysis, yielding appropriate nondimensional parameters and 

assessments of the flame response.  

 

6.2. Experimental Observations 

In this section, we present flame images of the “filtering” phenomenon. These images 

were obtained with a 2.54 cm diameter Bunsen burner, previously described in Rajaram 

and Lieuwen [4]. Acoustic oscillations were excited with a loudspeaker placed at the 
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bottom of the burner tube. The flame was stabilized with a methane-fueled (φ = 1.15) 

annular pilot. 

Experiments were performed with two fuels, methane and propane, which are 

respectively thermal-diffusively stable under rich and lean conditions when subjected to 

spatial perturbations through the action of stretch [3], and unstable otherwise. The 

controlling Lewis numbers (Le) for the stable and unstable cases are respectively greater 

and smaller than unity, with methane being only weakly nonequidiffusive because its Le 

deviates just slightly from unity.  

Figure 6.1 shows images of the lean and rich methane flames under perturbations 

of similar frequencies. It is seen that while the wrinkling decays in the downstream 

direction for the rich flame, it persists for the lean flame. Figure 6.2 shows images of two 

lean propane flames, with the frequency of the right image being twice that of the left, 

resulting in wrinkles with smaller and larger wavelengths, respectively. It is seen that 

while the wrinkles persist along the flame front for the smaller frequency, similar to 

previous observations [2], they decay rather rapidly for the larger frequencies. The latter 

situation, apparently, is the “filtering” phenomenon reported by Bourehla & Baillot [2]. 

The above observations demonstrate the two crucial parameters governing the 

evolution of the imposed wrinkles on the flame surface, namely curvature-induced stretch 

coupled through the action of mixture nonequidiffusion, and the frequency of the 

perturbation. In particular, Fig. 6.1 shows that, when the mixture is thermal-diffusively 

more stable as characterized by a larger Lewis number for the rich methane flame, the 

wrinkles are smoothed more rapidly as they propagate downstream along the flame 

surface. In addition, Fig. 6.2 shows that, for the thermal-diffusively stable lean propane 
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flames, the efficiency of stabilization is also promoted with decreasing wavelength and 

thereby increasing curvature of the wrinkles. These suggest that the fundamental 

mechanism governing the persistence or decay of the imposed wrinkles is that of stretch 

in the presence of mixture nonequidiffusion. We now present an analysis that 

quantitatively describes this phenomenon. 

 

6.3. Theoretical Analysis 

6.3.1. Basic Considerations 

Under a harmonic perturbation velocity field, ),(' tu x , the flame surface oscillates around 

its steady-state position. This leads to fluctuations of the heat release rate that may couple 

to the perturbation field, resulting in oscillations with either growing or decaying 

amplitude. Thus the basic problem of interest is to determine the response of the flame 

position, ),( txζ , and the heat release rate of the flame, to a given ),(' tu x . The global 

heat release rate of the flame is then given by 

∫= qdAstQ uuρ)(     (6.1) 

where ρu is the density of the unburned mixture, su the local flame speed, q the heat 

release per unit mass of the reactant, and the integral is over the entire flame surface area, 

A. Equation (6.1) shows that there exist three fundamentally different sources of 

generating heat release perturbations in a premixed flame, namely perturbations in the 

mass burning rate, ρusu, the heat of reaction, q, and the flame surface area, A.  

Since we are primarily interested in the flame response to flow perturbations, we 

assume constant q and ρu; analyses of the effects of these two sources of perturbation 

through fluctuations in the mixture composition and pressure are given in Cho & 
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Lieuwen [5] and McIntosh [6], respectively. It is noted that although a velocity 

perturbation that is acoustic in origin is accompanied by a pressure perturbation, their 

relative impacts differ greatly, on the order of the Mach number of the flame speed. As 

such, our subsequent calculations focus on the quantity:  

A
A

Ads

Ads

Q
Q

u

u ′
+

′
=

∫
∫'     (6.2) 

in the linear limit, where the overbar and prime respectively denote the steady-state and 

disturbed values. The response of the flame to the flow perturbation is then evaluated by 

the transfer function, defined as the ratio of the normalized fluctuation of the heat release 

rate to that of the flow velocity: 

( )
( )ouu

QQG
′
′

=      (6.3) 

where uo is the mean flow velocity. This transfer function consists of contributions from 

the perturbation to both the flame speed and flame surface area, which are expected to be 

also coupled since variations in the flame speed would cause corresponding variations in 

the shape of the wrinkles and hence the flame surface area. This is to be contrasted to 

previous studies [7-12] in which the transfer function is only affected by fluctuations of 

the flame surface area because the flame speed is assumed to be constant. 

 

6.3.2. Modeling Approach 

Figure 6.3 illustrates the geometry considered in the analysis, which is a two-dimensional 

wedge flame stabilized by a bluff body. The streamwise and transverse dimensions of the 

flame are given by the flame length, Lf, and its half width, W, without imposed 

perturbation. The instantaneous flame-sheet location at the transverse location, y, is given 
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by x = ζ(y,t) and is assumed to be a single-valued function of y. 

The analytical approach used here closely follows that of Baillot et al. [7] and 

Fleifel et al. [8]. The flame dynamics are modeled with the front tracking equation [3, 13]: 

2
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t u
ζζζ    (6.4) 

where u and v denote the streamwise and transverse components of the flow velocity, 

respectively. 

The flame speed can be expressed as [14] 

o
u

o
uu sLe

ss κβ
DD 11

2
1 AA 






 −+⋅∇−= n    (6.5) 

where o
us  is the constant, planar laminar flame speed, n the local normal on the flame 

front pointing toward the unburned mixture, AD the thermal thickness of the flame, β the 

Zel’dovich number, and κ  the flame stretch rate given by 

( ) ))(( nnVnvn ⋅∇⋅+××∇⋅−=κ    (6.6) 

where v = (u, v) is the flow velocity at the flame front on the unburned side and 

dtd /xV =  the local velocity of the flame front. We shall limit our study to the case of 

weak stretch, namely small AD/Lf, and assume ( ) )1(~11 OLe −−β . It is seen from the 

second and third terms of Eq. (6.5) that the modification of the flame speed by stretch is 

given by the sum of the pure curvature effect and the nonequidiffusion-related stretch 

effect. 

The flow is assumed to be purely streamwise, i.e. v = 0. Then, the mean 

streamwise velocity uo is related to the laminar flame speed, o
us , by 
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where the ratio of the flame length to its half width, χ = Lf/W, plays an important role in 

the flame dynamics. 

Following previous studies [7, 8], we assume that the flame remains anchored at 

the base, i.e.  

0),1( == tyζ      (6.8) 

For wedge flames, the second boundary condition comes from the requirement that all 

information should flow out of the flame. This is a rigorous way of capturing the fact that 

the flame tail is free to move around (see Fig. 6.3), i.e.  

0),0(
2

2

=
∂

=∂
y

tyζ     (6.9) 

The reason that we adopted the 2D wedge flame for analysis, instead of the 

axisymmetric conical flame used in the experiment, is because the axisymmetric wedge 

flame, as well as the 2D and axisymmetric conical flames, are not analytically solvable 

due to the extra curvature term associated with the bulk flame. Since our primary 

interests in the present study are to identify the critical scales of the imposed perturbation 

for stretch to be effective, and the mechanism for the self-damping of the flame wrinkles, 

the 2D wedge configuration offers a convenient platform to identify the controlling 

physics, as will be demonstrated subsequently. Furthermore, it is reasonable to expect, 

and we have numerically verified, that the flame responses for the 2D wedge and conical 

flames not only are qualitatively similar but are also quantitatively very close, with the 

only difference being the very small contribution from the tip region of the conical flame. 
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6.3.3. Velocity Field and Nondimensionalization 

Experimental studies have clearly shown that the perturbation velocity field can exhibit a 

variety of characteristics, including both acoustic and vortical components, which in the 

latter case exhibits phase variation over a convective wavelength, uo/f [15], where f is the 

perturbation frequency. By incorporating this convective phase variation into the 

perturbation velocity field, Schuller et al. [15] showed that the modeled flame area 

response agrees quite well with their data. As such, we assume the perturbation field to 

have an arbitrary phase speed so that the velocity field is specified as 

)(),( tki
o

oeuutu ωζζ −′+=     (6.10) 

where u′  and ωo respectively denote the amplitude and angular frequency of the velocity 

perturbation, and k is the convective wave number, defined as: 
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where uc is the phase speed of the perturbation, and α = uo/uc denotes the ratio of the 

mean flow velocity to the phase speed of the perturbation.  

Hereafter, the variables t, y, AD, u and ζ are nondimensionalized by Lf /uo, W, W, uo 

and Lf, respectively. The nondimensional front tracking equation is then given by 
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and the nondimensional velocity field can be written as 

)(1),( tiStetu −+= αζεζ     (6.13) 
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where  

o

fo

u
L

St
ω

=      (6.14) 

is the Strouhal number and ouu′=ε . 

The purely streamwise velocity field assumed in this study renders a divergence-

free perturbation field for α = 0, but in general not for α ≠ 0. While extending the current 

model to include a transverse velocity component in order to have a divergence-free 

perturbation field for the α ≠ 0 case is straightforward, it renders the resulting algebra 

quite tedious and does not contribute additional essential insight into the physics of the 

problem, at least at the level considered herein. It is emphasized that our goal here is not 

to simulate the exact perturbation field of a particular experimental setup, but rather to 

elucidate the key physical processes and the nondimensional parameters that influence 

the flame dynamics. 

 

6.4. Results and Discussion 

6.4.1. Solutions of Flame Perturbation and Transfer Function 

In this section, we derive the expressions for the location of the disturbed flame and the 

transfer function when the flame speed is affected by stretch.  

In response to the velocity perturbation, the flame position can be expanded as: 
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where  

yyo −= 1)(ζ      (6.16) 
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is the steady-state flame location. Substituting Eqs. (6.15) and (6.16) into Eq. (6.5), the 

flame speed relation can be expressed as: 
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where the subscript “y” denotes the spatial derivative with respect to y, and 
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are the Markstein numbers related to the curvature and strain sensitivities of the flame 

speed, respectively. Recognizing that the curvature of the flame front can be expressed as 

( ) 2/321 χζ +′yy , Eq. (6.17) shows that, in the linear limit, the individual contributions 

from the flame curvature and strain have been separated out, as respectively represented 

by the second and third terms on its RHS. Furthermore, it is seen from Eq. (6.18) that, as 

noted earlier, the flame speed is modified by the curvature through a pure curvature effect, 

which is independent of Le, and the curvature component of the nonequidiffusion-related 

stretch. Consequently, the nonequidiffusional effect tends to strengthen the pure 

curvature effect when Le > 1, and weakens it when Le < 1. We further note that alternate 

expressions for the stretch-affected flame speed exist, such as that of Matalon & 

Matkowsky [16]. However, once expanded in terms of the flame position and flow speed, 

they can be expressed in the same form as Eq. (6.17). The differences are lumped into the 

detailed expressions for the Markstein numbers, σC and σS. In this paper we shall study 

the effects of flame stretch on the flame response by employing different values of σC 

and σS, which provide a direct interpretation of their respective influences on the flame 
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response. Thus, the present analysis is not restricted by the specific expression for the 

stretch-affected flame speed, and as such is general in nature. We shall, however, restrict 

our investigation to positive values of σC, since we are interested in curvature-induced 

damping. Thus the mixtures of interest here are either diffusionally stable or mildly 

unstable, which respectively conform with the experimental situations of Figs. 6.2 and 

6.1.  

Substituting Eqs. (6.15)-(6.17) into Eq. (6.12) and collecting O(ε) terms, the 

evolution equation for the disturbed flame location ζ1 can be derived as 
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The solution of Eq. (6.20), subject to the boundary conditions in Eqs. (6.8) and (6.9), is 
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In the above Stf, referred to as the reduced Strouhal number, combines effects of 

the flame aspect ratio and the Strouhal number, and can be rewritten as 
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)cos()cos( θθω ofo uL , where θ  is the angle between the flame surface, without 

perturbation, and the flow direction. Thus it represents the angular frequency of the 

perturbation normalized by the time taken for the flame perturbation to propagate the 

flame length.  

Recognizing that in the limit of weak stretch, i.e. 0ˆ →Cσ  and 0ˆ →Sσ , we have 

−∞→2L , 21 LL ee >>  and yLyL ee 21 >>  except for the region very near the flame tail 

( 0→y ), Eq. (6.7) can be simplified to 

[ ])1(ˆ)1(
1

1 yStiyL feeC −− +−= αζ     (6.26) 

Figure 6.4 shows the transverse distribution of the amplitude of the flame oscillation, 

( )y1ζ , from the exact and approximate solutions, (6.21) and (6.26), respectively, for 

different values of Cσ̂ . It is seen that the solutions agree well for Cσ̂  up to 0.2, which is a 

rather large value, even near the flame tail region where yLyL ee 21 >>  is not closely 

satisfied. Furthermore, they only show very small difference at the flame tail even for 

5.0ˆ =Cσ . Thus, hereafter we shall present the analysis based on the simpler solution, Eq. 

(6.26).  

Next, we consider the total heat release of the flame. Since, by considering flame 

stretch, the heat release responds to the perturbation through both the flame surface area 

and flame speed, fluctuations of the heat release can be expressed as SA QQQ ′+′=′  in the 

linear limit, where 

∫ ′=′ AdsQ uS ,  ∫ ′=′ AdsQ uA     (6.27) 

are consequences of the fluctuations of the flame speed and flame surface area, 

respectively, and 
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( ) dyAd 2/121 χ+=      (6.28) 
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Substituting equations (6.13), (6.16) and (6.28)-(6.30) into Eq. (6.27), and then into Eq. 

(6.3), yields 
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where ( ) ( )oSS uuQQG ′′=  and ( ) ( )oAA uuQQG ′′=  are the transfer functions 

contributed from fluctuations of the flame speed and flame surface area, respectively. The 

overall transfer function is then given by G = GS + GA, which depends on four key 

parameters: Stf, α̂ , Cσ̂  and Sσ̂ . 

 

6.4.2. Baseline Flame Response  

Since the influence of stretch on the flame response to perturbations should be assessed 

based on comparisons between results with and without stretch, we shall first present the 

baseline flame response characteristics for the unstretched flame. For this case, the 

transfer function is only contributed from fluctuations of the flame surface area. With 

0ˆˆ == SC σσ , Eq. (6.26) becomes  
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As indicated in Boyer & Quinard [17], Eq. (6.33) shows that the shape of the 

flame front results from the conjugating action of the wrinkles convected along the flame 

induced by the flow oscillation at the flame base, ( )yiSt fe −1 , and those locally induced by 

the flow nonuniformity, )1(ˆ ySti fe −α . Figure 6.5 shows the transverse distribution of the 

amplitude of the flame oscillation, 1ζ , for the unstretched flame with different α̂ . It is 

seen that depending on the value of Stf and α̂ , the convective and locally induced 

wrinkling may superimpose constructively ( 2ˆ0 << α ) or destructively ( 2ˆ >α ), leading 

to larger or smaller amplitude of flame oscillation, respectively, in comparison with the 

case of uniform velocity perturbation ( 0ˆ =α ). In particular, 1ˆ =α  corresponds to the 

exact coincidence of the convective wrinkling and the locally induced wrinkling. In this 

case, the local flow nonuniformity acts on the flame in a similar manner as resonance, as 

shown by Eq. (6.20) with 0== SC σσ  and 1ˆ =α , leading to a much larger oscillation 

amplitude that is only a function of y and is independent of Stf. 

Substituting Eq. (6.33) into Eq. (6.32) yields the transfer function 
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with the gain given by  
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Figure 6.6a shows the dependence of the gain of the transfer function, G , on Stf 

for different α̂ . It is seen that the gains are always less than unity (except for the 1ˆ =α  

case) and exhibit a series of peaks and nodes. In particular, the nodes in the gain occur at 
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frequencies satisfying πα nStSt ff 2ˆ =− , (n=0,1,2…). The gains for the 0ˆ =α  and 

2ˆ =α  cases are identical, which is anticipated from the α̂  dependence of the gain in Eq. 

(6.35). In the limit of 1ˆ →α , Eq. (6.34) can be reduced to fiSteG =→1α̂ , leading to a 

constant, unity gain irrespective of the value of Stf. As we have just discussed and also 

shown in Eq. (6.34), the above characteristics for the gain of the transfer function is a 

consequence of the superposition of the convective wrinkling and the wrinkling locally 

induced by flow nonuniformity. Specifically, it is seen from Eq. (6.35) that the 

dependence of G  on α̂  is symmetric about 1ˆ =α , namely with the increase of α̂  from 0, 

G  first increases and then decreases monotonically as α̂  exceeds 1. Figure 6.6b shows 

the dependence of the phase of the transfer function on Stf for different α̂ . It is seen that 

the phase increases with increasing Stf and has a jump of –π at Stf satisfying 

πα nStSt ff 2ˆ =− , as a result of the nodes in the gains at these values of Stf.  

It is noted that the existence of nodes in the gain of the transfer function at 

πα nStSt ff 2ˆ =−  does not mean that the flame does not respond to perturbations at 

these frequencies. To demonstrate this point, the transverse distribution of the amplitude 

of the flame oscillation, 1ζ , is shown in Fig. 6.7 for Stf = 47.5 and χ = 2 ( Cσ̂ =0 case 

only). It is seen that for this frequency there exist nodal points ( 1ζ =0) on the flame 

surface in addition to the one at the flame base (y = 1). Thus the flame segments within 

these nodal points are constrained by them and as such oscillate in the manner of a 

vibrating string. Since there is no nodal point at the flame tail for this frequency, the 

flame segment between the flame tail and the nearest nodal point exhibits both bulk 
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oscillatory movement and local wrinkling. Thus the fluctuation of the flame surface area 

is a consequence of the superposition of these two forms of flame movement. Specifically, 

for frequencies corresponding to πα nStSt ff 2ˆ =−  ( πnSt f 2=  for 0ˆ =α ), a nodal point 

is located at the flame tail so that the entire flame surface is constrained by the nodal 

points, and the fluctuation of the flame surface area is only due to flame wrinkling. In this 

case, it can be shown that the fluctuation amplitude of the flame surface area is O(ε2), 

which is neglected by the linearization process. This is the reason that the transfer 

function shown in figure 5 has nodes for πα nStSt ff 2ˆ =−  even though the velocity 

perturbation wrinkles the flame.  

 

6.4.3. Stretch Effects under Uniform Velocity Perturbation 

The influence of stretch on the gain and phase of the transfer function is considered in 

this section. To obtain insight into the results, it is useful to first consider the case of the 

uniform perturbation velocity field ( 0ˆ =α ), which is simply an oscillating plug flow. For 

this case modification of the flame speed occurs only through the curvature of the flame 

front, as shown in Eq. (6.17). Then, the solution for the disturbed flame location, Eq. 

(6.26), becomes 

[ ])1(
1

111 −−−= yLe
iSt

ζ     (6.36) 

Figure 6.7 shows the transverse distribution of the amplitude of flame oscillation for 

different values of Cσ̂ , with the parameters (Stf = 47.5 and χ = 2) chosen to be consistent 

with the experiments of Bourehla & Baillot [2]. It is seen that in the presence of stretch, 

the amplitude of the flame front wrinkling decays continuously from the flame base (y = 
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1) to the tail (y = 0), in contrast to the constant amplitude for the unstretched flame 

( 0ˆ =Cσ ). Thus, the experimentally observed damping in the flame front oscillation away 

from the flame base is reproduced. Furthermore, since this damping increases with 

increasing Cσ̂ , and since Cσ̂  itself increases with increasing Le, this result also supports 

the experimental observation of Fig. 6.1 that perturbations are damped to a greater extent 

in rich than in lean methane flames because the former has a larger Le. 

To further explore the damping mechanism of flame wrinkling by stretch, we 

expand Eq. (6.36) for small Cσ̂ . In this limit,  

( ) 222
1 ˆˆ21~ fCfCf StStiStL σσ +−−  

Then Eq. (6.36) becomes 

( )[ ])1(ˆ21)1(ˆ
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iSt
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It is seen that for sufficiently small Stf, Eq. (6.37) degenerates to that of the unstretched 

flame 

[ ])1(
,1 11 −−−−= yiSt
NS

fe
iSt

ζ     (6.38) 

as is reasonable to expect. It is further seen from the comparison between Eqs. (6.37) and 

(6.38) that stretch damps the flame wrinkling through the term )1(ˆ 2 −ySt fCeσ , and this 

damping effect increases exponentially toward the flame tail, i.e. 0→y . This 

demonstrates that the extent of damping in the flame wrinkling by stretch is controlled by 

the nondimensional parameter 2ˆ fC Stσ , and becomes O(1) as )1(~ˆ 2 OSt fCσ , i.e. as the 

perturbation frequency satisfies ( )2/1ˆ~ −
Cf OSt σ . This property is consistent with the plots 

in Fig. 6.7. For example, even for the very small stretch, 0005.0ˆ =Cσ , the damping is 
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still quite evident especially near the flame tail (y = 0) because )1(~13.1ˆ 2 OSt fC ≈σ . For 

the case of 005.0ˆ =Cσ  for which 3.11ˆ 2 ≈fC Stσ , the damping is so strong that flame 

wrinkling is only evident near the flame base, consistent with the experimental 

observations of Bourehla & Baillot [2]. Furthermore, the nondimensional parameter 

2ˆ fC Stσ  indicates that the damping effect increases quadratically with the perturbation 

frequency and hence is very sensitive to it. This is the reason that doubling the 

perturbation frequency is able to completely damp the flame wrinkling except in the 

flame base region, as shown in Fig. 6.2. It is also seen from Eq. (6.37) and Fig. 6.7 that 

damping results in a more uniform flame oscillation amplitude, indicating an increase of 

the relative contribution of the bulk oscillatory movement of the flame to the fluctuation 

of the flame surface area.  

Equation (6.37) further shows that flame stretch is also able to modulate the 

wavelength of the wrinkling through the term 22ˆ21 fC Stσ−  in the exponential 

( ) )1(ˆ21 22 −−− yStiSt fCfe σ , and this modulation effect is O(1) for ( )1ˆ~ −
Cf OSt σ . However, at such a 

large Stf, wrinkling is damped such that its wavelength does not have much significance. 

Thus, this effect can be neglected so that Eq. (6.37) can be further simplified to 

[ ])1()1(ˆ
1

2

11 −−−−−= yiStySt ffC ee
iSt

σζ  

and the expansion of L1 only needs to keep the first two terms 

2
1 ˆ~ fCf StiStL σ+−     (6.39) 
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It is noted that by increasing Stf to ( )1ˆ −
CO σ , the expansion for L1, Eq. (6.39), becomes less 

accurate. However, the trend revealed for the flame response at this order of frequency is 

still preserved.  

We next study effects of flame stretch on the transfer function. Since the heat 

release rate mainly depends on the flame surface area, which in turn depends on the flame 

wrinkling, it is expected that flame stretch starts to have an O(1) effect on the heat release 

and thereby on the transfer function for frequency Stf from ( )2/1ˆ −
CO σ . Substituting Eq. 

(6.36) into Eqs. (6.31) and (6.32), respectively, yields 

( )11
ˆ1 L
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C
S e

iSt
LG −−−=
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( )111 L

f
A e

iSt
G −−−=      (6.41) 

Figure 6.8 shows variations of the gains of G, GA and GS, with the reduced 

Strouhal number, Stf, for 05.0ˆ =Cσ . The gain of the overall transfer function for the 

unstretched case ( 0ˆ =Cσ ),  

( )f

C

iSt

f

e
iSt

G −−== 11
0σ̂     (6.42) 

is also plotted for the purpose of comparison. It is seen that in the presence of flame 

stretch, the transfer function shows quite different behavior from the unstretched case. 

Specifically, the nodes at πnSt f 2=  in the gain of the transfer function for the 

unstretched case ( 0ˆ =Cσ ) are eliminated in the presence of stretch, as already shown in 

Fig. 6.7, leading to higher values of G  for the stretched flame around these frequencies. 

Relaxation of the flame surface from the nodal points then enhances fluctuation of the 
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flame surface area, through the bulk oscillatory movement, to a larger extent than the 

damping effect through reduced wrinkling, which is O(ε2) for πnSt f 2= . Moreover, for 

the stretched case the overall transfer function G is very close to GA at small Stf (< 5), 

implying that contribution from the fluctuation of the flame surface area dominates that 

of the flame speed. However, with increasing Stf the relative contribution of GS increases 

and finally becomes comparable to GA at Stf ~ 30. It is noted that the gain of the overall 

transfer function, G , is not simply the sum of AG  and SG  because GA and GS are not 

necessarily in phase, as will be shown in Fig. 6.9. 

The dependence of the transfer functions, GA, GS and G, on the flame stretch Cσ̂  

and perturbation frequency Stf can be further illustrated by substituting the expansion for 

L1, Eq. (6.39), into Eqs (6.40) and (6.41), resulting in 

( )( )ffC iStSt
fCfC

f
S eeStSti

iSt
G

2ˆ22 1ˆˆ1 σσσ −−+−−≈   (6.43) 

( )ffC iStSt

f
A ee

iSt
G

2ˆ11 σ−−−≈     (6.44) 

Comparing Eq. (6.44) with the transfer function for the unstretched flame, Eq. (6.42), 

shows that flame stretch starts to have an O(1) effect on the transfer function as the 

perturbation frequency Stf satisfies )1(~ˆ 2 OSt fCσ , as noted earlier. At this frequency, 

( )2/1ˆ~ CAS OGG σ  and hence the contribution from the flame speed fluctuation is 

secondary relative to that of the flame surface area. Thus, the overall transfer function G 

is mostly derived from fluctuations of the flame surface area, which however is still 
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affected by flame stretch through modulation of the shape of the wrinkles. Therefore, we 

have 

( ) ( )2/1ˆ ˆ~11 2

C
iStSt

f
A Oee

iSt
GG ffC σσ−−−≈≈    (6.45) 

With Stf increasing from ( )2/1ˆ −
CO σ  to ( )1ˆ −

CO σ , the contribution from the flame speed 

fluctuation, GS, becomes comparable to GA. Furthermore, since flame wrinkling is totally 

suppressed at this order of Stf, fluctuations of the flame surface area are mainly due to the 

bulk movement of the flame. Then, the transfer functions become 

( )22ˆˆ1
fCfC

f
S StSti

iSt
G σσ +−−≈ ,  

f
A iSt

G 1
−≈   (6.46) 

and the overall transfer function is given by 

( ) ( )CfCfC
f

OStiSt
iSt

G σσσ ˆ~ˆˆ11 22 −+−≈    (6.47) 

The above characteristics are consistent with Fig. 6.8, which shows that G and GA have 

almost identical values for Stf < 5 ( )1(~ˆ 2 OSt fCσ ), while GA and GS contribute 

comparably to the overall transfer function G for Stf  > 20 ( )1(~ˆ OSt fCσ ). 

Figure 6.9 shows variations of the phases of G, GA and GS with the reduced 

Strouhal number, Stf, for 05.0ˆ =Cσ . It is seen that, compared to the unstretched case, the 

–π jump in the phase resulting from the nodes in the gain of the transfer function is 

smoothed out, due to the elimination of these nodes in the presence of stretch. 

Furthermore, it is seen that at small Stf, the phase of G follows closely that of GA, whereas 

with increasing Stf it approaches the phase of GS due to the increased relative contribution 
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of GS. This is the same trend as what was discussed for the gain of the transfer function in 

Fig. 6.8. 

 

6.4.4. Stretch Effects under Nonuniform Velocity Perturbation 

In the more general case of a nonuniform perturbation velocity field in the streamwise 

direction ( 0ˆ ≠α ), the flame speed is modified by both the curvature and aerodynamic 

strain, as shown in equation (6.17). In addition, the baseline flame response is also 

changed due to the wrinkling locally induced by the flow nonuniformity.  

Substituting Eq. (6.26) into Eqs. (6.31) and (6.32) yields the transfer functions 

under nonuniform perturbation, 
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Figure 6.10 shows variations of the gains of G, GA and GS with Stf, for 05.0ˆ =Cσ , 

0ˆ =Sσ  and 2ˆ =α . It is seen that at small frequencies (Stf < 5) the overall transfer 

function G can be approximately represented by GA, whereas at large Stf, G follows 

closely the trend of GS, indicating that contributions from fluctuations of the flame 

surface area and flame speed dominate at small and large frequencies, respectively. To 

further analyze the trend shown in Fig. 6.10, we substitute the expansion for L1, Eq. 

(6.39), into Eqs. (6.26), (6.48) and (6.49), and obtain 
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( ) ( ) ( )( )yiStyiStySt fffC eee
iSt
C −−−− +−−≈ 1ˆ11ˆ1

1

2 ασζ    (6.50) 

( )( ) ( )[ ] ( )αασ σασσσ ˆˆˆ221 1ˆ1ˆˆ1ˆˆ
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ffffC iSt
S

iSt
fC

iStSt
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S eeStieeStSti

iSt
CG −−−+−+−−= −  (6.51) 

( )ασ ˆˆ1
2

fffC iStiStSt

f
A eee

iSt
CG +−−= −     (6.52) 

Comparing Eq. (6.52) with the transfer function for the unstretched flame, Eq. (6.34), 

shows that flame stretch begins to have O(1) effects on the transfer function GA as the 

perturbation frequency satisfies )1(~ˆ 2 OSt fCσ , as in the case of the uniform velocity 

perturbation. At this frequency, ( )2/1ˆ~ CAS OGG σ  and hence the contribution from GS can 

be neglected in the overall transfer function. Thus, the overall transfer function G is 

mostly derived from fluctuations of the stretch-affected flame surface area: 

( )ασ ˆˆ1
2

fffC iStiStSt

f
A eee

iSt
CGG +−−=≈ −     (6.53) 

Furthermore, as we have discussed in Section 6.3.2, under nonuniform velocity 

perturbation the solution is determined by the superposition of the convective wrinkling 

and the wrinkling locally induced by flow nonuniformity. It is apparent from the 

comparison between results obtained with and without stretch effects, Eqs. (6.33) and 

(6.50) and Eqs. (6.34) and (6.53), that stretch only damps the convective wrinkling, with 

the locally induced wrinkling remaining unchanged.  

As Stf increases from ( )2/1ˆ −
CO σ  to ( )1ˆ −

CO σ  such that )1(~ˆ OSt fCσ , the contribution 

from the flame speed fluctuation, GS, becomes comparable to that from GA. Furthermore, 

it is seen from Eq. (6.51) that aerodynamic strain only operates through the flame speed 

fluctuation. Further note that since both Cσ̂  and Sσ̂  are determined by the 
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nondimensional thermal thickness of the flame (see Eqs. (6.18) and (6.19)) and that we 

have assumed ( ) )1(~11 OLe −−β , Cσ̂  and Sσ̂  can be assumed to have the same order of 

magnitude. Thus, at ( )1ˆ~ −
Cf OSt σ , aerodynamic strain contributes to GS comparably with 

the rest of the terms of GS. At this order of Stf, contributions to GA and GS due to 

convective wrinkling have been totally damped such that the transfer functions become 

( ) ( )[ ] ( )αα σασσσ ˆˆ221 1ˆ1ˆˆˆˆ ff iSt
S

iSt
fCfCfC

f
S eeStiStSti

iSt
CG −−−++−−=   (6.54) 

f

iSt

A iSt
eCG

f α̂
1−=     (6.55) 

With further increase of Stf, GS dominates over GA and G follows closely the trend of GS 

at large Stf, which is consistent with Fig. 6.10.  

Figure 6.11 shows variations of the phases of G, GA and GS with Stf, for 

05.0ˆ =Cσ , 0ˆ =Sσ  and 0ˆ =α . It is seen that, as in the case of the uniform velocity 

perturbation shown in Fig. 6.9, the phase jump of –π is moderated by stretch and the 

phase of G follows the trends of GA and GS at small and large Stf, respectively. The 

difference is that for this value of α̂  (= 2), all the phases have close values.  

In contrast to the constant gain of unity for the unstretched 1ˆ =α  case shown in 

Fig. 6.5, results show that stretch effects cause the gain to reduce monotonically with 

increasing Stf. It is also noted that the gains for the 0ˆ =α  and 2ˆ =α  cases are identical in 

the unstretched case. However, in the presence of stretch, they possess different values. 

As we have discussed, the special characteristics for the gain of the transfer function of 

the unstretched case, such as unity gain for 1ˆ =α  and the same gains for 0ˆ =α  and 

2ˆ =α , are consequences of the superposition of the convective and locally induced 
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wrinkling. Therefore, for these values of α̂ , damping of the convective wrinkling leads 

to substantially different behavior in the presence of stretch. 

 

6.5. Conclusions 

In this study we have investigated the linear response of a 2D wedge-shaped premixed 

flame to harmonic velocity perturbations, allowing for the dependence of the flame speed 

on stretch. Different from previous studies, the transfer function now consists of 

contributions from fluctuations of both the flame surface area and flame speed. Two 

nondimensional parameters, 2ˆ fC Stσ  and fC Stσ̂ , were identified to characterize their 

relative contributions and thereby the influence of flame stretch on the flame response. 

Specifically, as the perturbation frequency satisfies )1(~ˆ 2 OSt fCσ , i.e. ( )2/1ˆ~ −
Cf OSt σ , 

flame stretch starts to have O(1) effects on the transfer function through damping of the 

perturbation-induced flame wrinkling. At this order of the frequency, the contribution 

from the flame speed fluctuation is negligibly small. Thus flame stretch affects the 

transfer function only through its modulation of the flame shape and thereby its surface 

area, with this effect increasing with the square of the perturbation frequency. At larger 

frequencies such that )1(~ˆ OSt fCσ , i.e. ( )1ˆ~ −
Cf OSt σ , contributions from fluctuations of 

the flame surface area and flame speed become comparable.  

It is noted that previously flame stretch was thought to be not important in the 

response of flames to perturbations. The suggested reason [8] is that while the flame 

curvature and hence stretch effects could become large for large perturbation frequencies 

at which the wavelength of the perturbation-induced flame wrinkling is small, the 

sensitivity of the flame response diminishes significantly at large frequencies. The 
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present study has however demonstrated that flame stretch is still important for 

“moderate” perturbation frequencies even for small Cσ̂ . This is because even if Cσ̂  is 

small, ( )1ˆ~ −
Cf OSt σ  could assume values that are not very large but nevertheless would 

induce O(1) effects on the flame response.  

While the present study has yielded useful insights into the effects of stretch on 

the flame response upon being harmonically disturbed, especially on the role of self-

induced curvature damping leading to the experimentally observed phenomenon of 

filtering, and the critical Strouhal numbers at which stretch effects become important, 

there are additional issues that need to be investigated. In particular, the study has 

focused on damping situations because of our interest in understanding the filtering 

phenomenon, and because they are sufficient to ensure stability in operations. It would 

however also be of interest to study situations in which the perturbation is either 

amplified or sustained, especially for small Le mixtures for which σC could become 

negative. Operationally, it has been suggested that resonant combustion could facilitate 

the heat transfer characteristics of burners.  

We also note that, by studying 2D instead of axisymmetric flames, the effects of 

the azimuthal curvature of the bulk flame on the development of wrinkles are suppressed. 

Studies on flamefront cellular instability [3, 18] have shown that these wrinkles tend to 

be moderated by positive stretch and aggravated by negative stretch, which are 

respectively manifested by the wedge and conical geometries. The richness of the 

potential flame responses merits further investigation. 
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(a)                                      (b) 

 

Figure 6.1. Visualization of (a) a 130 Hz acoustically excited lean methane flame (φ = 

0.8, uo = 0.65 m/s), and (b) a 140 Hz acoustically excited rich methane flame (φ = 1.4, uo 

= 0.7 m/s). Images show flame wrinkling with constant and damped amplitudes, 

respectively. 
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(a)                                       (b) 

 

Figure 6.2. Visualization of a (a) 100 Hz and (b) 190 Hz acoustically excited propane 

flame (φ = 0.7 and uo= 0.8 m/s). Images show flame wrinkling with constant and damped 

amplitude, respectively. 
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Figure 6.3. Schematic of two dimensional wedge shaped flame geometry. 
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Figure 6.4. Transverse distribution of the flame oscillation amplitude, ( )y1ζ , from Eqs. 

(6.21) and (6.26), respectively, for different values of Cσ̂  with St = 10, χ = 2 and 0ˆ =α . 

Note that y = 1 and y = 0 correspond to the flame base and tale, respectively. 
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Figure 6.5. Transverse distribution of the flame oscillation amplitude, ( )y1ζ , for the 

unstretched flame with Stf = 20, χ = 2 and different α̂ . Note that y = 1 and y = 0 

correspond to the flame base and tale, respectively. 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

3

0, 2

0.5, 1.5

Am
pl

itu
de

 o
f f

la
m

e 
os

ci
lla

tio
n

1- y

1ˆ =α



www.manaraa.com

 200

 

 
(a) 

 
(b) 

 

Figure 6.6. Dependence of (a) the gain and (b) the phase of the transfer function on Stf for 

unstretched flame with different α̂ . 
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Figure 6.7. Transverse distribution of the flame oscillation amplitude, ( )y1ζ , for 

different values of Cσ̂  with Stf = 47.5, χ = 2 and 0ˆ =α . Note that y = 1 and y = 0 

correspond to the flame base and tale, respectively. 
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Figure 6.8. Variations of the gains of the overall transfer function G and the transfer 

functions resulted from the fluctuations of flame surface area and flame speed, GA and 

GS, with Stf for 05.0ˆ =Cσ  and 0ˆ =α . The gain of the overall transfer function for 

0ˆ =Cσ  and 0ˆ =α  is also plotted for comparison. 
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Figure 6.9. Variations of the phase of the overall transfer function G and the transfer 

functions resulted from the fluctuations of flame surface area and flame speed, GA and 

GS, with Stf for 05.0ˆ =Cσ  and 0ˆ =α .  
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Figure 6.10. Variations of the gains of the overall transfer function G and the transfer 

functions resulted from the fluctuations of flame surface area and flame speed, GA and 

GS, with Stf for 05.0ˆ =Cσ , 0ˆ =Sσ  and 2ˆ =α .  
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Figure 6.11. Variations of the phases of the overall transfer function G and the transfer 

functions resulted from the fluctuations of flame surface area and flame speed, GA and 

GS, with Stf for 05.0ˆ =Cσ , 0ˆ =Sσ  and 2ˆ =α .  
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Chapter 7: Summary and Recommendations for Future Work 

 

7.1. Summary 

In this dissertation flame oscillations in both diffusion and premixed flames have been 

analytically studied. For diffusion flames (Chapters 2 ~ 5), the study was focused on the 

intrinsic oscillations induced by the thermal-diffusive instability and their coupling with 

the imposed flow oscillations. Radiative heat loss was also considered. To facilitate the 

study on radiation-affected flames, a model allowing for radiative loss and non-unity 

Lewis numbers was developed and then utilized to study radiation-induced flame 

extinctions and oscillations. For premixed flames (Chapter 6), the study was focused on 

the effects of flame stretch on the response of a 2D wedge-shaped flame to harmonic 

flow oscillations.  

Specifically, in Chapter 2, a systematic analysis of flame oscillations was carried 

out for adiabatic planar diffusion flames. We employed the asymptotic theory of 

Cheatham & Matalon [1], and performed a bifurcation analysis in which the Damköhler 

number Da  is chosen to be very close to the critical Damköhler number DaCr, 

corresponding to the marginally stable state. A nonlinear evolution equation of the 

Landau type was derived for the amplitude of perturbation. Solutions to the resulting 

equation indicate three distinct burning regimes, which are mapped out in parameter 

space. Results show that the perturbations may either decay to zero such that the planar 

flame is stable, or the amplitude can become unbounded in finite time, indicating flame 

quenching.  Furthermore, our equation admits time-periodic (limit-cycle) solutions, 
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although these solutions were not found to exist over a wide range of parameters typical 

of combustion systems. 

In Chapter 3, we carried out a systematic analysis of the forced flame oscillations 

subjected to imposed flow oscillations of small amplitude. The linear response of flames 

was first examined and the results show that even very small imposed flow oscillations 

can induce flame oscillations of infinitely large amplitude, as the frequency of flow 

oscillations approaches the intrinsic oscillation frequency when the flame is near the 

marginal state of thermal-diffusive instability. This is a resonance phenomenon between 

the intrinsic and forced flame oscillations. The nonlinear near-resonant response is then 

conducted by deriving an evolution equation for the amplitude of forced oscillation.  The 

Damköhler number Da and forced frequency are chosen to be close to DaCr and the 

intrinsic oscillation frequency so that even very weak forcing is able to induce O(1) 

oscillation amplitude. It is shown that by considering inherent nonlinearity, flame 

oscillation exhibits finite amplitude at the resonant condition. Examination of the 

evolution equation revealed that, in most situations, flames with larger LeF, smaller φ, 

smaller ∆T, and 1 < LeO < 2 are most responsive to the flow oscillations. 

In Chapter 4, we studied the structure and extinction characteristics of radiative 

counterflow diffusion flames. A model that includes radiative loss and nonunity Lewis 

numbers of the fuel and oxidant was first developed using multiscale asymptotic analysis. 

This model considers properly the excess enthalpy, which is a crucial element in stability 

analyses but was overlooked in previous analyses for radiative diffusion flames [2-4]. 

The existence of dual extinction limits in the presence of radiative heat loss, namely the 

kinetic limit at small Damköhler numbers (high stretch rate) and the radiative limit at 
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large Damköhler numbers (low stretch rate), were identified. The former was found to be 

minimally affected by radiative loss, while substantial amount of heat loss is associated 

with the radiative limit. Reactant leakage, however, is the cause for both limits. The 

influence of radiative loss on the extinction Damköhler numbers was found to be through 

its effects on the flame temperature, excess enthalpy and the reduced extinction 

Damköhler number. At both extinction limits, contributions from the flame temperature 

are always important and dominant. Contributions from the other two, however, could be 

important in some special cases. Specifically, the contribution from the excess enthalpy is 

important for small LeO and it may be comparable to the contribution from the flame 

temperature when radiative loss is small. Thus, overlooking the excess enthalpy in 

previous analyses may result in rather large error in the predicted extinction Damköhler 

numbers, especially the kinetic one. 

In Chapter 5, a linear stability analysis was conducted using the model developed 

in Chapter 4 to study the occurrence of flame oscillations in radiation-affected diffusion 

flames. The intrinsic oscillations near the radiative extinction limit at large Damköhler 

numbers were identified, in addition to the one near the kinetic limit at small Damköhler 

numbers. It was shown that radiative loss assumes a similar role as varying the thermal 

diffusivity of the reactants. Thus, flame oscillation near the radiative limit is still thermal-

diffusive in nature although it may develop under unity Lewis numbers. The unstable 

range of Damköhler numbers near the radiative limit shows quite similar parametric 

dependence on LeF, LeO, f, and the radiative loss as that near the kinetic limit. However, 

they show different dependence on the temperature difference between the supplying 

reactants.  
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In Chapter 6, we studied the linear response of 2D wedge-shaped premixed 

flames to harmonic velocity oscillations, allowing for the influence of flame stretch 

manifested as variations in the local flame speed along the wrinkled flame front. Results 

obtained from analyzing the G-equation show that the flame response is mainly 

characterized by the Markstein number Cσ̂  and the Strouhal number Stf, which 

respectively characterize the curvature effect of the wrinkles and the oscillation 

frequency. Flame stretch is found to become important when the oscillation frequency 

satisfies )1(~ˆ 2 OSt fCσ , i.e. ( )2/1ˆ~ −
Cf OSt σ . Specifically, for frequencies below this 

order, stretch effects are small and the flame responds as an unstretched one. When the 

frequencies are of this order, the transfer function, defined as the ratio of the normalized 

oscillation of the heat release rate to that of the velocity, is contributed mostly from 

oscillations of the flame surface area, which is now affected by stretch. Finally, as the 

frequency increases to ( )1ˆ~ −
Cf OSt σ , i.e. )1(~ˆ OSt fCσ , the direct contribution from the 

stretch-affected flame speed oscillation to the transfer function becomes comparable to 

that of the flame surface area. The present study phenomenologically explains the 

experimentally observed damping of the perturbation-induced flame wrinkling for large 

frequency flow oscillations as well as for thermal-diffusively stable and weakly unstable 

mixtures. 

 

7.2. Recommendations for Future Work 

7.2.1. Comprehensive Studies on the Response of Stretched-Affected Premixed Flames to 

Flow Modulations  
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In Chapter 6, the response of premixed flames to flow oscillations was studied and the 

effects of flame stretch on the transfer functions have been identified. However, this 

study was still a quite preliminary one. First, the experiments were conducted only for 

methane/air and propane/air flames under very limited stoichiometric conditions and a 

narrow range of oscillation frequencies. As such, while the experimental results were able 

to demonstrate qualitatively the existence of flame stretch effects, they cannot be used for 

the quantitative comparison with the theoretical results. In addition, both the 

experimental and theoretical results in Chapter 6 were limited to the thermal-diffusively 

stable or weakly unstable flames such that the Markstein number Cσ̂  is always positive. 

Since the mathematical simplifications and theoretical analysis in Chapter 6 were based 

on the assumption of small and positive Cσ̂ , it is expected that the stretch effects would 

be significantly different under a negative Cσ̂ . Therefore, a systematically designed 

experiment covering a variety of fuels with different stoichiometric conditions and 

diluents is needed to extend the current study to a wider parameter range. A careful 

measurement of the flame surface area would allow a quantitative comparison with the 

theory. 

Second, the study of Chapter 6 was based on the 2D wedge-shaped flame. By 

studying 2D instead of axisymmetric flames, the effects of the azimuthal curvature of the 

bulk flame on the development of wrinkles are suppressed. However, studies on 

flamefront cellular instability [5, 6] have shown that these wrinkles tend to be moderated 

by positive stretch and aggravated by negative stretch, which are respectively manifested 

by the wedge and conical geometries. In addition, it is important to note that for 

axisymmetric flames, since the stretch-induced damping of flame wrinkling is most 
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significant at the flame tip, a region that contributes substantially and minimally to the 

flame area for wedge and conical flames, respectively, the impact of stretch on the 

transfer function of wedge flames is expected to be significantly higher than that of 

conical flames. The richness of these potential flame responses in different flame 

geometries certainly merits further investigation. 

Third, the studies in Chapter 6 and the above discussions are so far limited to the 

linear response of flames, and hence to small amplitudes of flow and flame oscillations. 

In order to study the effects of flame stretch on the limit cycle amplitude of flame 

oscillations, the current study needs to be extended to the nonlinear regime allowing for 

finite amplitude of flow and flame oscillations. Specifically, Lieuwen [7] showed that 

flames with less flame surface area near the attached point exhibit stronger nonlinearity. 

Since the damping effect of flame stretch is more significant for such flames because a 

larger portion of the flame wrinkling is damped by stretch, flame stretch is expected to 

have a strong effect on the nonlinear response of flames.  

Finally, the understanding gained from the above studies on the response of 

flames to flow modulations should be applied to the acoustic equation in reactive flows to 

investigate the generation of acoustic waves by unsteady combustion heat release. Only 

then we can have a complete analysis on the driving mechanism responsible for the 

development of thermo-acoustic instability. 

 

7.2.2. Numerical Simulation of Unsteady Combustion Heat Release in More Realistic 

Flows 
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Guided by the understandings gained from the theoretical analysis in highly idealized 

flame configurations, the studies on the response of premixed flames to flow modulations 

should be extended to more realistic flows, such as mixing layer flows, with emphasis on 

the effects of flow unsteadiness on the combustion heat release. Specifically, the 

evolution processes of large coherent vortex structures in mixing layers, including vortex 

rollup, formation and paring control the transport of fresh reactants into the flame and 

distort the flame surface area, and thereby determine the nonsteady conversion rate of 

reactants and the combustion heat release. Since these processes are generally multi-

dimensional, transient and even turbulent, advanced numerical methods must be adopted, 

such as Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS). For plane 

mixing layer flows, the study can first be conducted in a simpler time-evolving mixing 

layer in which two adjacent vortices rollup, rotate with each other and finally amalgamate 

into a single one. Thus, the response of flame to the two adjacent interacting vortices can 

be isolated. Then the simulation can be conducted in realistic mixing layer flows. The 

final stage of this study is to incorporate the feedback effects of unsteady heat release on 

the coherent vortices to study the potential resonant coupling between the unsteady heat 

release and vortices.  

 

7.2.3. Coupling between the Intrinsic Instabilities of Premixed Flames and Flow 

Modulations 

The above studies can also be extended to incorporate the intrinsic instabilities of flames, 

which are expected to lead to significantly different flame responses when coupled to the 

flame oscillations and wrinkling induced by flow modulations. For example, it has been 
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found that a parametric acoustic instability of planar flames may be produced through the 

coupling between the acoustic standing waves in tubes and downward propagating flames 

[8]. The physical mechanism driving this instability is the periodic acceleration of the 

flame surface separating two regions of different density. For the present study, the flame 

is oblique and anchored at a fixed point, and hence has some specific characteristics, such 

as convective wrinkling, in addition to the density jump across the flame. The flame 

wrinkling is expected to be coupled to the hydrodynamic instability under small 

frequencies (large wavelength), and to the thermal-diffusive instability under large 

frequencies (small wavelength). Once the coupling mechanisms between the intrinsic 

flame instabilities and external flow modulations are understood, they can be utilized to 

suppress or enhance the intrinsic flame instabilities. For example, it has been found that 

an acoustic field of moderate intensity can first stabilize the hydrodynamic instability of 

premixed flames and then, at higher intensity, produce parametric cellular instability with 

a well-defined threshold and associated with a well-defined critical wavenumber [8]. 

 

7.2.4. Thermal-Diffusive Instability of Diffusion Flames in More Realistic Configurations 

The studies on the thermal-diffusive instability of diffusion flames in this dissertation 

were focused on the 1D non-strained planar configuration with a uniform underlying flow 

field. However, experimentally the unstable phenomena in diffusion flames were mostly 

observed in configurations with complex underlying flow field, such as jet flames [9] and 

candle flames [10]. Although thermal-diffusive effects have been identified to play a 

crucial role, it is not clear to what extent the influence of flow field may have on the 

development of thermal-diffusive instability. Thus, a comprehensive study of the 
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thermal-diffusive instability of diffusion flames in more realistic configurations should be 

conducted. This work should start from the theoretical work of this dissertation with the 

assumptions that may affect the results relaxed. The final stage of this work is expected to 

be the numerical simulation of real flames, such as jet flames, using advanced numerical 

method and detailed chemistry and transport models. 

 

7.2.5. Nonlinear Analysis of Flame Oscillations in Radiative Diffusion Flames 

Although we have identified the critical conditions for the onset of flame oscillations near 

the radiative extinction limit in Chapter 5, the subsequent behavior is still not clear. In 

particular, persistent flame oscillations (limit-cycle) have only been observed near the 

radiative limit, and the analysis in Chapter 2 has also shown that limit-cycle near the 

kinetic limit cannot be realized for parameter values in adiabatic combustion systems. 

Thus a nonlinear analysis must be carried out for flame oscillations near both extinction 

limits in radiation-affected diffusion flames. This can be realized using the model derived 

in Chapter 4 and following the same procedures as those in Chapter 2. 
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